
 March 1, 1999

SIBO 'C' Software Development Kit

SERIES 3/3A PROGRAMMING GUIDE

Version 2.30

2

(C) Copyright Psion PLC 1990-98

All rights reserved. This manual and the programs referred to herein are copyrighted works of Psion PLC,
London, England. Reproduction in whole or in part, including utilization in machines capable of
reproduction or retrieval, without express written permission of Psion PLC, is prohibited. Reverse
engineering is also prohibited.

The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks, and Psion, Psion MC, Psion HC, Psion Series 3, Psion
Series 3a, Psion Series 3c, Psion Siena and Psion Workabout are trademarks of Psion PLC.

TopSpeed is a registered trademark of Clarion Software Corporation. IBM, IBM XT and IBM AT are
registered trademarks of International Business Machines Corp. Microsoft and MS-DOS are registered
trademarks of Microsoft Corporation. Apple and Macintosh are registered trademarks of Apple Computer
Inc. VAX and VMS are registered trademarks of Digital Equipment Corporation. Brief is a registered
trademark of Underware Inc. Psion PLC acknowledges that some other names referred to are registered
trademarks.

Contents

1 Series 3 Programming Overview...1-1

Programming possibilities ...1-1
Differences between .app files and .img files..1-2

Add-file lists...1-2
Pre-defined add-file slots ..1-2
Running programs via RunImg S3..1-3
Program files with and without icon files..1-3
Resource files and shell data files..1-3
Customised add-files...1-3
Finding add-files within a .app file ...1-3

Multi-lingual applications ...1-4
Environment variables on the Series 3 ...1-4

Avoid $ signs..1-5
Series 3 family compatibility ...1-5

Series 3/Series 3a/Workabout compatibility..1-5
Compatibility with Series 3c and Siena...1-5
Programs written for the Series 3..1-5
Programs written for the Series 3a ..1-5

2 Communicating with the System Screen...2-1

Introduction...2-1
Creating .shd files ...2-1

The format of .ms files..2-1
Default extension..2-2
Public name..2-2
Default directory...2-2
Application type numbers ...2-2
Multi-lingual forms of .ms files ..2-3
Pure file list applications...2-4

Aliasing applications...2-4
Creating .als files..2-5
Active aliasing and passive aliasing..2-5
Active aliasing in the built-in text editor ...2-5
How aliasing works ..2-6

Epoc reserved statics..2-7
DatProcessNamePtr (0x22)...2-7
More on the file lists in the System Screen..2-7
Assigning application buttons...2-8
DatUsedPathNamePtr (0x3e)..2-8
DatStatusNamePtr (0x3c)...2-9
DatLocked (0x3a)...2-9

The Series 3 command line..2-9
Summary of command line format..2-10
Supplying a command line from the SIBO Debugger..2-10
From command line to reserved statics ...2-11
Applications that disregard their command line..2-11
Creating directories when required ...2-12

Messages from the System Screen..2-12
Shutdown messages ..2-12
Switchfiles messages...2-12
How messages from the System Screen are received..2-12
Contents of the new command line for System Screen messages2-13
Other possible types of messages...2-13
Multi-lingual aliasing of Word.app...2-13

GENERAL PROGRAMMING MANUAL

ii

3 Enhanced Sound Output..3-1

Introduction...3-1
Sound on the Series 3 ..3-1

Introduction ..3-1
The sndfrc and snddvr device drivers..3-1
Installing sndfrc.ldd..3-1
Opening a channel to MUS:..3-2
Actually creating sounds...3-2
Example ...3-3
Possible tones ...3-3
Pauses...3-3
When to open and close MUS: ..3-3
When to install and de-install the ldd file..3-4

Sound on the Series 3a...3-4

4 Use of Spy.app..4-1

Introduction...4-1
Building spy.app...4-1

The main display...4-1
Heap statistics...4-2
Stack statistics ..4-2
Segment statistics ...4-2
Tests for heap integrity ...4-2
Process priorities...4-2
Other data...4-3
Logging Window Server statistics...4-3

Appendix A Technical Specifications ...A-1

Psion Series 3a Technical Specification ...A-1
Psion Series 3/3s specification ...A-2
Psion Series 3c Technical Specification ...A-3
Psion Siena Technical Specification...A-4
Psion Siena SSD Drive Technical Specification ...A-5
Psion Serial 3Link Technical Specification..A-5

PC Serial 3Link to Apple Macintosh converter ...A-7
PC Serial 3Link to Apple Macintosh converter ...A-7
Modem Adaptor cable...A-7

Serial Printer cable (Series 3a) - Technical Specification ...A-7
Serial Printer cable (Series 3c/Siena) - Technical Specification..A-8
Psion PC Link cable Technical Specification ...A-8

Modem Adaptor cable...A-8
Psion Mac link cable Technical Specification ..A-8
Psion 9-to-25 way D-type adapters Technical Specification..A-9
Modem 9-to-25 way D-type adapter - wiring diagram..A-9
PC (XT) 9-to-25 way D-type adapter - wiring diagram ..A-9
Printer 9-to-25 way D-type adapter - wiring diagram...A-10
Psion Parallel 3Link Technical Specification ...A-10
Psion Parallel Printer Link Cable Technical Specification..A-10
Psion PC Card Modem Adapter Technical Specification..A-11
Psion Travel Modem Technical Specification ..A-13
Psion 3Fax Modem Technical Specification...A-14

Appendix B Differences Between Psion Series 3 Models ..B-1

Current models in the Series 3 family..B-2
Superceded models in the Series 3 family ..B-3

1-1

CHAPTER 1

SERIES 3 PROGRAMMING OVERVIEW

Throughout the Series 3 Programming Guide, reference to the Series 3 machine should be taken to
include the Series 3a and the Workabout unless stated otherwise. See also the Workabout Programming
Guide for further information specific to that machine.

Programming possibilities
In general terms, there are six different levels at which programs can be written for the Series 3:

• using OPL, creating .opo or .opa program files

• using CLIB, with user interface restricted to console i/o of the getchar and puts variety

• using PLIB, again with user interface restricted to console i/o

• using WLIB, accessing the graphics and windowing capabilities of the Window Server

• using Hwif, with its support for menus and dialogs similar to those available in OPL/w

• using HWIM, FORM, OLIB and (for the Series 3a) XADD, the object-oriented DYLs built into
the ROM.

 All but the first of these uses the C programming language.

 For programming in OPL see the Series 3, Series 3a and Workabout Programming manuals, or the SIBO
OPL Software Development Kit.

 For more detailed information about PLIB library routines and the window server see the PLIB Reference
and Window Server Reference manuals respectively.

 Programming using Hwif is also covered in its own separate manual, Programming in Hwif. This manual
is particularly recommended on account of its relevance to the Series 3.

 For details of object-oriented programming see the object oriented sections of the C SDK, starting with the
Object Oriented Programming Guide.

 The present manual focuses on features of the Series 3 and Series 3a that are by-and-large unique to these
particular computers (as opposed to other computers in the SIBO range, that is, the HC and MC
computers). These features include:

• the difference between .app and .img forms of program file

• communications between applications and the System Screen

• the specialised form of the command line for applications

• some device drivers unique to the Series 3 and/or Series 3a

• development tools particularly suited to the Series 3 and Series 3a computers.

• writing applications that run on all machines.

SERIES 3/3A PROGRAMMING GUIDE

1-2

 Other parts of the SDK that may be found of particular relevance to programming for the Series 3
include:

• the descriptions of file formats used by various applications, in the Additional System
Information manual

• a description of the special form of printer driver files used on the Series 3, also in the Additional
System Information manual.

 Before proceeding further with this chapter, the reader is recommended to be familiar with the basic
contents of the General Programming manual.

 Differences between .app files and .img files
 Strictly speaking, there is no real difference between files with extension .img and those with extension
.app. For example, although the System Screen usually expects to install .app files, it will also, if
requested, install suitable .img files.

 However, by convention a .app file contains one or more extra so-called add-files embedded within it, in
addition to the core .img file itself. These files may include:

• a .pic file providing the icon for the application

• a .rsc or .rzc file providing the resource file for the application

• a .shd file providing the shell data for the application.

 Any such add-files can be added into the .img file automatically, via the operation of emake.exe, at the
time the .img file is itself created. What controls the set of add-files used (if any) is the presence or
absence of a suitably named add-file list (.afl) file.

 Add-file lists

 An add-file list (.afl) file is a text file containing from one to four filenames. For example, the contents of
a file tele.afl could be:

 tele.pic
tele.rsc
tele.shd

 When any .pr project file is invoked that leads to the building of tele.img, the existence of a file tele.afl is
checked for. If such a file is found, the files listed therein are combined with the core .img file to form a
larger .img file as output. By convention, .img files that contain embedded add-files are renamed to .app
files.

 See the chapter Building an Application in the General Programming manual, for more details.

 Pre-defined add-file slots

 The RSCFILE class in the OLIB library can find resource files embedded in a .app file, but only if they are
placed in the second of the four slots.

 The System Screen expects to find a .shd file in the third add-file slot of a program being installed, and
indeed will refuse to install it if no such data is found there.

 The Window Server, however, will find a .pic file (or a .fon file) at any of the four add-file positions
within a .app. In view of the requirements for resource files to occupy the second slot, and for .shd files to
occupy the third slot, .pic icon files are usually placed in the first add-file slot - as in the above example.

 At the time of writing, there is no mechanism to specify a file for (say) the third add-file slot, while
omitting the second add-file altogether. For this reason, it may occasionally be necessary to create and
maintain a zero-length file for the second slot.

1 SERIES 3 PROGRAMMING OVERVIEW

1-3

 Running prog rams via R unImg

 An alternative to installing a program in the System Screen with its own file list is to run it from the
RunImg icon:

• the user presses TAB while the highlight is within the RunImg file list

• the user navigates the file selector until it selects the program file

• the user presses ENTER to start this program.

 This procedure can be simplified if the program is placed in a top-level \img\ directory, and given the
extension .img. In this case, the program will automatically appear as an entry in the RunImg file list.

 However, a program run in this way will receive no special command line from the System Screen. Nor
will it r eceive any Shutdown or Switchfile messages from the System Screen. (These messages are
discussed in the following chapter).

 Program files with and wit hout icon files

 An application can simply not have an icon, although in this case the system screen will simply refuse to
install it. The application can, however, still be run from RunImg, in which case, an empty icon boundary
will be displayed in any status window used.

 Icon files, such as tele.pic, may be produced by a variety of means:

• using the Iconed demo application that can be built using the Hwif part of the SDK or, for the
Series 3a and Workabout, the Iconeda application that is installed in a \sibosdk\s3atool directory

• using the Window Server tool wspcx.exe on the .pcx output of a PC program such as Windows
PaintBrush.

 The .pic file can contain:

• a 24x24 bitmap for a Series 3 icon.

• two 48x48 bitmaps for a Series 3a icon - the first and second bitmaps specify the black and grey
planes respectively.

• a 24x24 bitmap for a Series 3 icon followed by two 48x48 bitmaps for a Series 3a icon.

 The format of .pic files is given in the Bitmaps section in the Window Server Reference manual.

 Resource files and shell data files

 See the Resource Files chapter of the Additional System Information manual for a description of the
format and uses of resource files.

 Shell data files are discussed in the following chapter.

 Customised add-files

 In most cases, at least one add-file slot will be free for use by the application itself.

 One important reason to build an extra file into the .app file, rather than leaving such a file separate, is
that it diminishes the chance of a user copying the .app file from one SSD to another but neglecting to
copy a vital associated file at the same time.

 Finding add-files within a .app file

 Ordinarily, applications have no need to find add-files within themselves, since system code takes care of
this on their behalf.

 One possible exception is when an application needs to access a customised add-file. In this case,
knowledge of the format of the header of a .img (or a .app) file is required. In fact, this header just
contains the same information as is returned by invoking edump.exe.

 The header of a .img file is described by the ImgHeader struct, defined in epoc.h. See the chapter
Processes and Inter-process Messaging in the Plib Reference manual for a discussion on this struct.

SERIES 3/3A PROGRAMMING GUIDE

1-4

 An example of code that attempts to locate a resource file in the second add-file slot of a .app file is as
follows:

 GLDEF INT rscfile_rs_init(PR_RSCFILE *self,TEXT *name)
 {
 ImgHeader head;

 /* self->rscfile.offset is zero by default */
 f_open(&self->rscfile.pcb,name,P_FRANDOM|P_FSTREAM|P_FSHARE);
 if (p_read(self->rscfile.pcb,&head,sizeof(head))==sizeof(head))
 {
 if (!p_scmp(&head.Signature[0],"ImageFileType**"))
 { /* we have a .img file */
 if (!(self->rscfile.offset=head.Add[1].offset))
 p_leave(E_FILE_INVALID);
 }
 ...
 }

 }

 Multi-lingual applications
 The topic of multi-lingual applications is discussed in general terms in the course of the Resource Files
chapter of the Additional System Information manual.

 There are some issues about the set of possible command hot-keys ("menu accelerators"), however, that
are particular to the Series 3.

 The set of possible accelerators varies from language to language on account of the keyboard changing.

 All languages must, however, support the 26 accelerators 'a' through 'z', together with four more.

 These additional accelerators are '+', '-', '*', and '/' in most languages. The only exceptions so far are
French and Spanish (and Belgian, which uses the French keyboard):

• French replaces '/' with '?'

• Spanish replaces '*' with '>' and '/' with 'ñ'.

 Applications which fail to take account of these changes when they are translated into another language
will find they end up carrying a "lame" accelerator: the accelerator is displayed on the menu, but there is
no way for the user to press the required key combination.

 Environment variables on the Series 3
 Environment variables can be a powerful programming resource whilst being, at the same time,
potentially anti-social.

 There are two aspects to this:

• environment variables consume space in a special RAM segment devoted to them - the more
environment variables are created (and the larger these are), the greater the chance becomes of
other applications failing to work properly - on account of not being able to create their
environment variables.

• name clashes are possible - data stored in an environment variable by one application may get
obliterated by another application storing different data to an identically named variable.

With regard to the first problem, all that can be said is that due caution should be observed. Otherwise,
your application may earn itself a bad name.

With regard to the second problem, what is evidently required is some kind of naming convention.

For a full discussion of environment variables see the paragraphs preceding p_getenv in the Plib
Reference manual.

1 SERIES 3 PROGRAMMING OVERVIEW

1-5

Avoid $ signs

The '$' sign is used in names of environment variables created and manipulated by Psion system
software.

All external applications should completely avoid using environment variables with '$' signs in them -
unless they first secure the agreement of Psion.

The plan is to extend the use of '$' to mean, not just "used by Psion", but rather "licensed by Psion".
Interested software developers who contact Psion will be given a short identifier - for example, "17" . A
company which receives this identifier could then create environment variables with names such as
"17table" or "17md" , secure in the knowledge that no other responsible developer will also use these
names.

In conclusion, '$' signs should be avoided in all cases; even where approved by Psion, environment
variable names should include '$' signs only in their identifier region. Thus a name of "A17$" would
not be allowed. Environment variables can of course continue to have "simple" names, such as "table"

and "md" , but in this case, the chance of a name clash remains.

Series 3 family compatibility

Series 3/Series 3a/Work about compatibility
All Series 3 applications are fully compatible with the Series 3a and Workabout. These two machines
automatically recognise such applications and run them in compatibility mode - both the icon, as
displayed on the system screen, and the display are expanded linearly by a factor of two in each
dimension.

In fact an application that wishes to use the full screen capabilities of the Series 3a or Workabout must
explicitly turn off the compatibility mode by calling the wCompatibilityMode function - see the Window
Server Reference manual for further details.

An application can identify which machine it is running on - using a call to p_getlcd - see the Plib
Reference manual for details, and Compatibility in the General Programming Manual for an example.

Thus it is quite feasible to write an application that runs on the Series 3, Series 3a and the Workabout,
using the screen of each machine to the full. However, care should be taken to ensure that the application
does not use any Series 3a or Workabout specific features when running on the Series 3 - the grey scale
or, on the Series 3a, the improved sound facilities for example. The Workabout also has different
keyboard scan codes from the other members of the Series 3 family, (see Hardware Management, in the
EPOC O/S System Services manual).

Compatibility with Series 3c and Siena
Programs written for the Series 3

All Series 3 programs can be expected to run without modification on both the Siena and the Series 3c.
The programs will run in compatibility mode, as they do on the Series 3a.

Programs written for the Series 3a

Most types of program will run without modification on the Series 3c.

It is likely that most Series 3a programs will need some modification, to take account of the smaller screen
size, before they will run on the Siena. Menus and dialogs in Series 3a programs will, in general, be too
wide and will need to be reorganised and/or reworded. Applications that use a sophisticated layout in their
display are likely to need extensive modification before they can be used on the Siena.

Series 3a applications written using the Hwif library, and which use grey lines in their menus, will need to
be relinked with a suitably modified Hwif library before they will run on either the Siena or the Series 3c.
This incompatibility is associated with the introduction of small fonts for dialogs on the Workabout and
Siena.

Hwif programs that are compiled and linked with a modified Hwif library (see the Programming in Hwif
chapter of this upgrade document) that is supplied with the upgrade software can run on the Series 3,
Series 3a, Series 3c, Workabout and Siena - provided, of course, that their displays are tailored to the
various screen sizes and graphics capabilities of these machines.

SERIES 3/3A PROGRAMMING GUIDE

1-6

2-1

CHAPTER 2

COMMUNICATING WITH THE SYSTEM SCREEN

Introduction
An important aspect of the Series 3 is the way all the built-in applications communicate with the System
Screen application (also known as the Shell application):

• The name of any file currently open is displayed in bold in the file list in the System Screen

• This name is also displayed in any status window shown

• On a request from the System Screen, an application can close itself down tidily, saving any
changes to file as appropriate

• Alternatively, applications can be requested to switch files, to change which file they are
currently editing.

 Applications use two mechanisms to communicate to the Series 3 OS their preferences concerning file
switching, as well as the name of the file they are currently editing:

• some data is written at compile time into a shell data file (.shd file) that is linked into the
application's .app file; this data includes the expected extension of any files to be edited, and the
default directory for these files, as well as the more basic point of whether the application is file-
based at all

• other data can be written at run time to various reserved Epoc statics; these include the full path
name of the file currently being edited.

 Creating .shd files
 The format of .ms files

 The shell data of an application (see above) is expressed in source form in a file that typically has
extension .ms. For example, the contents of a file tele.ms could be:

 Tele.TEL
\TEL\
3

 Running the tool makeshd as follows

 makeshd tele

 would produce the file tele.shd from tele.ms (barring syntax errors in the .ms file).

 The .shd file can then be combined into the final .app form of an application as discussed in the previous
chapter.

 The first line in a .ms file has general form

 <Name>[<.EXT>]

 with the extension .EXT only being present for file-based applications. In that case, .EXT defines the
default extension for the application. In all cases, Name is the so-called public name of the application.
This must be a valid file name, that is, it must start with a letter and not exceed eight characters.

SERIES 3/3A PROGRAMMING GUIDE

2-2

 The second line in a .ms file gives the default directory for an application. This can be left blank for non
file-based applications. For example, the .ms file for the built-in Time application could be

 Time

8000

 with the second line left blank.

 The third line in a .ms file gives the type of the application (sometimes called the type number of the
application).

 A .ms file can have fourth, fifth, sixth ... lines, but only if 2000 has been added to the application type, so
that the application has multi-lingual shell data (see below).

 At present, there is no scope for the inclusion of comments in a .ms file.

 Note that the entire contents of a .ms file is case sensitive. Eg an application with first line

 RunGame

 in its .ms file will have public name RunGame, whereas an application with first line

 Rungame

 in its .ms file will have the distinct public name Rungame. Further, the default extension and default
directory should always be given in upper case (otherwise the file list may fail to display any files).

 Default extension

 The significance of the default extension for a file-based application is as follows:

• Files will be shown in the file list for the application in the System Screen only if their extension
matches the default (with the exception that files are always shown - in bold - if they are
currently the open file of an application)

• The System Screen will pass the specified default extension to the application as part of its
command line, when it is started

• Typically, applications will use filename selectors in dialogs which hide extensions matching the
default (eg showing Tele rather than Tele.tel), and may even omit other files from the initial list
presented.

 Public name

 The significance of the public name of an application is as follows:

• This is the name by which the System Screen refers to the application, eg when confirming that
the application be "Removed", or when allowing an application button to be assigned to the
application

• This name will be displayed in the file list for the application, in the System Screen, in any case
when the list would otherwise be empty.

 The contents of Name[.EXT] must in all cases be a valid filename, ie Name cannot exceed eight characters
in length, EXT cannot exceed three characters in length, and there must be no embedded spaces (etc).

 Default directory

 Files will be shown in the file list for the application in the System Screen only if they are located in a
directory whose name exactly matches the default (with the exception that files are always shown - in
bold - if they are currently the open file of an application).

 Default directories for applications are usually top level, as in \TEL\. However, they can equally well be
subdirectories, as in \TEL\PRIVATE\, with the limitation that the total length cannot exceed 20 characters
(this count including a terminating zero at the end of the directory path name).

 Application type numbers

 The significance of an application's type number is as follows:

• A type of 0 means that the application a) will have no file list when installed in the system screen
- instead there will be only one entry, giving the public name of the application b) will receive no
Switchfile commands from the System Screen and c) no filename will be specified in the
command line. Type 0 applications can have only one copy running at any one time.

2 COMMUNICATING WITH THE SYSTEM SCREEN

2-3

• A type of 2 is used to restrict a file based application such that only one copy can run at any one
time - this is the case for the built-in World application. In contrast see types 0 and 3.

• A type of 3 means that the application a) will have a file list when installed in the System Screen,
and b) can receive Switchfile instructions. More than one copy of the application can be run at
any one time.

• A type of 4 means that the application will have a file list in the System Screen, but will never be
sent Switchfile instructions: however, it should read the command line on its start up (an example
is the built-in RunOpl application)

• Finally, a type of 5 means that the application is a pure file list application, ie not a real
application at all, but just an icon to group together various applications or utility programs (like
the built-in RunImg icon) - see below for more details.

 The application's behaviour may be further modified by adding one or more of the following values to the
type number:

 8000 prevents Switchfile messages of the Create sort being sent to the application
(this makes sense for an application such as a file dumper, which can dump the
contents of existing files, but cannot meaningfully create the file it is going to
dump)

 4000 prevents the application being sent Shutdown messages - this will also prevent
the application being Killed from the System Screen (but not, for example,
from the Spy application released as part of the SDK)

 2000 indicates that the application's .ms file contains public names for more than one
different language version (see below)

 1000 indicates that the .pic file contains a 48 by 48 Series 3a icon (preceded by a 24
by 24 icon if the application is to run on the Series 3 as well as the Series 3a).
The Series 3 does not recognise this flag and will simply read the 24 by 24 icon
if present.

 100 the application should not be sent an exit message so that, for example,
pressing DELETE acts as Kill application. The Series 3 does not recognise this
flag.

 80 on selecting "Create new list" from the System Screen, the resulting dialog box
will contain an extra line, for specifying Text editor or Word processor type.
The Series 3 does not recognise this flag.

 Multi-lingual fo rms of .ms files

 Suppose the Data application were to be translated into French, German, and Italian, and that its public
names in these languages were to be Fiche, Daten, and Archivi, respectively. In that case, an appropriate
.ms file would be as follows:

 Data.DBF
\DAT\
2003
01Data
02Fiche
03Daten
05Archivi

 Here, the 2000 in the application type means that the remaining lines in the .ms file are each made up as
follows:

 <language number><public name in that language>

 where language numbers are as documented in the p_getlanguage part of the Plib Reference manual.

 The same rules apply to the public names for other languages as to the default public name defined in the
first line of the .ms file.

 It is not possible to change the default extension or the default directory from one language to another.

SERIES 3/3A PROGRAMMING GUIDE

2-4

 Applications which are intended to be capable of being run on either mono- or multi-lingual Series 3s
should adopt the multi-lingual form of .ms file, and simply accept that the public name will be incorrect
on mono-lingual machines.

 For multi-lingual machines, the System Screen uses the following rules to decide what the public name of
the application should be:

• the current language number is obtained by a call to p_getlanguage

• if this matches any language for which a public name is explicitly defined in the shell data, that
public name is used

• otherwise, the default public name is used (as given on the first line of the .ms file).

 For the sake of minimising the size of a multi-lingual .shd file as much as possible, it is evidently possible
to omit any lines such as

 01Data

 which merely define the public name for some language to be what it would have been in any case, were
this line omitted (in view of the contents of the first line of the .ms file).

 Pure file list applications

 If an application (Utils, say) has type 5, and the user presses ENTER when the highlight is over some file
Xyz.abc in the file list for that application, the System Screen makes no attempt to run the application
Utils. Rather, it assumes that Xyz.abc is itself a program, and attempts to run that. In other words,
instead of executing Utils and passing the filename Xyz.abc as part of the command line, it executes
Xyz.abc (without any command line being passed).

 For example, the .ms file for the built-in "application" RunImg is as follows:

 RunImg.IMG
\IMG\
8005

 This means that the file list for RunImg lists .img files from \IMG\ top-level directories - each of which are
program files.

 Note that unless the utility programs cooperate in some limited way, when run they will be listed (in bold)
under the RunImg icon, rather than under any other pure file list icon. This is explained in the section
below on the Epoc reserved static DatProcessNamePtr .

 In practice, the simplest way to create another pure file list application is probably to use the technique of
aliasing, as discussed immediately below, to alias RunImg.

 Aliasing applications
 Some file-based applications may end up with large file lists. It may be desirable to separate a file list into
two or more separate lists, for example (for the Word application) all correspondence going in one file list,
all poetry in another, and so on. These file lists could be distinguished, on the System Screen, by having
distinct icons, and different application buttons could be used to cycle round running instances of these
tasks.

 Going further, it may be desirable for the behaviour of the application to alter, depending on which type
of file is open. For example, the behaviour of the built-in text editor is different for .wrd files (when the
application is seen as Word) from .opl files (when the application is seen as Prog).

 The concept of aliasing an application is designed to meet these requirements. For each required new file
list, an alias file (.als file) should be installed in the System Screen. In practice the user can do this on the
Series 3a using the "Create new list" item from the "Special" menu (try it out ...).

 Broadly speaking, the contents of a .als file match those of a .shd file: the public name, default extension,
and default directory are all defined, as well as the application type number. However, the .als file goes
beyond the .shd file in that it also specifies:

• the name of the application that is being aliased

• (optionally) some alias info that the System Screen should pass to the application when it is run,
via the command line, to configure its behaviour in some special way.

2 COMMUNICATING WITH THE SYSTEM SCREEN

2-5

 Creat ing .als files

 An .als file is produced from a .ma file and a .pic file by running the tool makeals. The three files all
have the same root name (ie disregarding the extensions). For example, the command

 makeals letter

 produces the file letter.als from letter.ma and letter.pic.

 The .pic file is the icon to use. The process of creating .pic files is discussed in the previous chapter.

 The .ma file is a source file similar in format to a .ms file. For example, the contents of a file letter.ma
could be:

 Letter.let
\WRD\LET\
3
Word

 in which there is a fifth line which is blank (makeals will give an error if the fifth line is omitted
altogether).

 Just as there are multi-lingual forms of .ms files, there are also multi-lingual forms of .ma files. However,
in practice these are of limited use, for technical reasons. This is discussed in its own section (which the
majority of readers can skip) at the end of this chapter.

 The first three lines of a .ma file correspond exactly to those of a .ms file. The fourth file is the public
name of the application to alias. The fifth line gives the alias info, which is a zero-terminated string of
up to eight characters.

 In most cases, the application type will be the same for the alias file as for the application being aliased.
However, the public name, the default extension, and the default directory are all commonly varied.

 Note that the public name of an alias must differ from that of the application it is aliasing. Otherwise,
seeking to install the alias in the System Screen will have no effect (it is not possible to have two different
file lists, each with the same public name).

 Incidentally, no check is made, at the time of installing an alias file, that the application it aliases is itself
currently installed. This check is only made when an instance of the alias is to be started.

 Active aliasing and p assive aliasing

 In theory, all applications are capable of being aliased, without them needing to make any conscious
provision for this possibility. This is known as passive aliasing.

 Other applications pay explicit attention to any alias info that may be passed to them on their command
lines, and adjust their behaviour according to the contents of this info. This is known as active aliasing.
An example of active aliasing is that of the built-in text editor, as described in the following section. This
is the only one of the applications built into the Series 3 and Series 3a that supports active aliasing.

 Any other program that supports active aliasing is free to interpret alias info passed to it in any way that it
wishes. There is no obligation to mimic the detailed rules obeyed by the text editor.

 Active aliasing in the built-in text editor

 If the alias info is a null string, the text editor enters Word mode, with multi-level outline facilities, styles
and emphases, and so on.

 Note that it is not unreasonable for an alias to define null alias info. This allows the creation of aliases of
the text editor that behave in exactly the same way as the built-in Word application, but differ from each
other in terms of their default extensions, default directories, and/or public names.

 If there is any non-null alias info, the text editor enters one of a number of other modes, with the mode
depending on the first character of the alias info. Some of these modes are not available on Series 3
machines. At the time of writing, the allowed first characters and the corresponding modes are:

 O
S

$

/

 OPL program editor
Comms script program editor
Plain text editor (not Series 3)
Word processor with custom template (not Series 3)

SERIES 3/3A PROGRAMMING GUIDE

2-6

 The program editor mode is available on all machines. In this mode there is no access to the style and
emphasis subsystems, the corresponding menu commands being replaced by options to "translate", "run",
"show error" and set "indentation".

 In this mode, the first letter of the alias info denotes the nature of the program that is being edited. It
actually identifies the program to invoke to effect any "translate" and (possibly) "run" commands from the
user. The generic name of this program is sys$prg?.img, with the question mark being filled in from the
first letter of the alias info. Thus the Prog alias has 'O' for the first letter of its alias info, and so the OPL
translate/run program sys$prgo.img is used. In contrast, the Script editor from the communications ROM
has 'S' for the first letter of the alias info, so that the program sys$prgs.img is used.

 In program editor mode the second letter of the alias info should be 'R' if the program is of a type that
understands "run" instructions in addition to "translate" ones. Any other second character disables the
"run" command option. The following three letters (e.g. 'OPO' or 'SCO') denote both the expected file
extension and the expected top-level directory where any translated output will by default be placed. (This
information is used by the editor when offering the user a suitable filename to "run").

 On the Series 3a a final '*' character may be added to the alias info. This has the effect of adding an "S3
Translate" menu option.

 The remaining modes are not available on Series 3 machines.

 Alias info that consists of a single '$' character selects a plain text editing mode. In this case the
program-related menu options are suppressed, with only an "indentation" option being offered.

 A variant on the Word mode is set by alias info that consists of a single '/' character. This behaves in a
similar way to the Word application, with the exception that a specific template file is loaded whenever a
new file is created. The template must have the same name as the aliased application and must be located
on the current drive at the time the new file is created. Thus, an alias created from the following .ma file:

 Letter.LET
\LET\
1083
Word
/

 would, on creation of a new file, automatically load the template file \wdr\letter.wrt, provided it exists on
the current drive. Note that, in this mode, the value 80 must be added into the application type number. If
it is not, the automatic loading of the template is disabled.

 How aliasing works

 Part of the mechanism of aliasing is handled by the System Screen:

• creating a new file list

• listing the appropriate files in the new file list

• allowing the user to assign a new application button to the new file list

• creating a suitable command line to pass to the relevant application, when the user chooses to
start an instance of the alias (by pressing ENTER on an entry in the file list).

 However, other parts of the mechanism of aliasing rely on the application paying suitable attention to the
details of the command line passed to it. Failure to do this will diminish the effect.

 Thus even passive aliasing relies on some cooperation from the application being aliased. For example,
an application that is determined that it knows what its public name is (say Word) and which writes this to
DatProcessNamePtr (see below) in all cases, despite any different public name being passed to it on the
command line, will frustrate the intent of any aliasing application:

• any application button assigned to the alias by the user will be ineffective

• running instances of the alias will appear (in bold) in the wrong file list in the System Screen.

 This is just one reason why all serious applications should analyse the command line passed to them, as
part of their initialisation procedures.

 There are routines in both the Hwif library and the Hwim dyl to assist in analysing the command line.

2 COMMUNICATING WITH THE SYSTEM SCREEN

2-7

 Epoc reserved statics
 The values of the Epoc reserved statics DatProcessNamePtr , DatLocked , DatStatusNamePtr , and
DatUsedPathNamePtr all have special significance for Series 3 applications. The values of these variables
for different applications are read at various times by the System Screen and also by the Window Server.
An application which fails to write suitable data to these statics may find that:

• an incorrect name is displayed in any status window shown in the application

• instances of the application are shown in the wrong file list in the System Screen

• Shutdown or Switchfiles messages arrive at inopportune moments from the System Screen (see
below for more on these messages)

• assigning an application button to the application in the System Screen has no effect.

 In general, applications should write to these reserved statics:

• on initialisation (after having analysed the contents of their command line)

• whenever a new file is opened

• whenever the application is about to go "busy" over an extended period of time.

 There are routines in both the Hwif library and the Hwim dyl that assist with keeping these reserved
statics up to date.

 While debugging using the Sibo Debugger, the values of reserved statics can be determined by using the
"Magic Statics" menu command.

 DatProcessNamePtr (0x22)

 This static is read by the System Screen when deciding which file lists bolded running applications should
be placed into. It is also read by the Window Server when deciding which action to take when an
application button is pressed. Finally, it is read by the System Screen in response to any "Quit
application" menu commands, to determine how to implement this request (ie how much cooperation the
System Screen might expect from the application).

 The way the file lists are built in the System Screen is as follows:

• for each list, the set of all eligible files is compiled; these will all be displayed non-bolded

• then for each running application, it is decided which file list the application belongs to

• this involves reading the value of DatProcessNamePtr for the application

• further, for each running application, the name of the file currently open (if any) is decided

• this involves reading the value of DatUsedPathNamePtr for the application (and possibly also the
value of DatProcessNamePtr)

• if this name matches any entry in the file list, that entry is removed (so that it is no longer
displayed non-bolded)

• the name of the open file is added to the list, in bold.

 Clearly, the lists will be misleading if the running application is assigned to the wrong list.

 The rules for assigning a running application to a particular file list are straightforward:

• the preferred public name of the application is read from DatProcessNamePtr

• if this matches the public name of any existing file list, the application is assigned to that list

• otherwise, the application is assigned to the RunImg list.

 More on the file lists in the System Screen

 Incidentally, any entry starting with Sys$ is never displayed in any file list. Further, the name Link is
never displayed in the RunImg list. These rules prevent the display of private system processes within the
System Screen file lists.

SERIES 3/3A PROGRAMMING GUIDE

2-8

 Additionally, files with the "hidden" attribute set are never displayed in a file list in the System Screen -
unless the file is open within an application (in which case it will be displayed in bold).

 In order to check for the existence of hidden files or file starting with Sys$ in a directory, the user should
press TAB to enter "directory" mode of the System Screen.

 It is also possible to task to an application whose open file starts with Sys$ by repeatedly pressing the
SHIFT+SYSTEM key combination, which tasks round all running applications (that are clients of the
Window Server).

 Assigning application buttons

 Suppose that the user has installed the application Tele, and has assigned the application button
CONTROL+WORD to it. The following is what happens when the user presses CONTROL+WORD:

• at all times, the System Screen maintains a data structure associating each of the 14 possible
application buttons to public names of applications

• the address of this data structure, within the System Screen dataspace, is known to the Window
Server (in fact it is kept at DatApp1)

• when CONTROL+WORD is pressed, the Window Server consults this data to determine the public
name that is currently associated with this application button (ie Tele in this example)

• the Window Server next checks whether the public name of the current foreground application
matches Tele, reading the public name from DatProcessNamePtr

• if so, this application is sent a special key-press event, with keycode value equal to W_KEY_MODE

(as defined in wskeys.h) - unless the SHIFT modifier is also held down, in which case the
algorithm continues as below

• otherwise, the clients of the Window Server are scanned in current task order, to see whether any
can be found with the required public name

• if any can be found, this is made foreground

• failing this, a message is sent to the System Screen to position, if possible, to the file list
associated with the given public name

• if no such file list exists, the System Screen beeps and gives a suitable error message.

 The crucial point in this is that, once again, the public name of the application has to be written to
DatProcessNamePtr .

 Incidentally, it is now clear why pressing the CONTROL+SYSTEM key (assigned to RunImg), or any other
application button assigned to a pure file list application, often fails to have the desired effect (of bringing
to foreground a running application listed in the relevant file list). The point is that these applications are
generally run without any command line being passed to them, and so they cannot set up a suitable value
at DatProcessNamePtr merely by analysing their command lines.

 Also note that the assigned buttons differ in one aspect of their behaviour depending on the machine used.
Consider an application, the built-in database say, that is currently running in the foreground. On the
Series 3 pressing the Data button would change the application from search mode into change mode, and,
on a second press, back into search mode. On the Series 3a pressing the Data button has no effect when
there is currently only one copy of the application running. However when multiple copies are running,
then pressing the Data button has the effect of sequentially bringing each copy into foreground -
simultaneously holding down the shift key reverses the order of bringing into foreground. Try out the Data
button while running multiple copies of the database ...

 DatUsedPathNamePtr (0x3e)

 The Epoc reserved static DatUsedPathNamePtr is read solely by the System Screen, which assumes that if
it is non-null for an application, DatUsedPathNamePtr points to a full path specification of the file
currently open in the application. As described above in the section on DatProcessNamePtr , these
filenames are used when generating the file lists in the System Screen:

• any open file matching an entry in the non-bold section of the file list replaces that entry

• the filename is parsed and rearranged, eg from the form LOC::A:\WRD\SHOPPING.WRD into
Shopping[A].

2 COMMUNICATING WITH THE SYSTEM SCREEN

2-9

 In case DatUsedPathNamePtr is null, the value of the string at DatProcessNamePtr (if any) is used instead:
failing that, the process name (as returned by p_pname) is used.

 Initially, the name of the open file is part of the command line (see below). However, when this has to be
changed - either as a result of an Open or Save as command inside the application, or in response to a
Switchfile request from the System Screen - a new buffer has to be used for this purpose. (The command
line buffer is sized to precisely the right length needed for the initial file.)

 Typically, file-based applications will maintain a permanent buffer, of length P_FNAMESIZE, to store any
change in the name of the file open. Once the new name has been copied into this buffer, a call such as
hSetUpStatusNames (described below) should be made, to adjust all Epoc statics as appropriate, including
DatUsedPathNamePtr .

 DatStatusNamePtr (0x3c)

 The Epoc reserved static DatStatusNamePtr is used to determine which text string should be displayed as
the name of the application in any status window shown for that application.

 If non-zero, this is assumed to point to a string giving the text to use, with the text being clipped at the
first dot encountered, and in any case after eight characters. The text is also converted into standard
capitalised form. Thus if DatStatusNamePtr points to "DIARY.AGN" , the text Diary will be displayed in
the status window.

 The rules for what text to display when DatStatusNamePtr is null are the same as those employed when
DatUsedPathNamePtr is null (see above).

 DatLocked (0x3a)

 When the user attempts to terminate an application using the "Quit application" command in the System
Screen, or to change the file currently open, by pressing ENTER on another entry in the file list for that
application, the System Screen checks the value of the Epoc reserved static DatLocked for that application.

 If this is non-zero, a message Application is busy is displayed, and the user's request is refused.

 Applications which enter a state in which they are unable to respond to such requests from the System
Screen should accordingly set DatLocked to TRUE. Good programming practice dictates that DatLocked be
set back to FALSE again as soon as possible afterwards.

 The Series 3 command line
 The command line communicates the following information to a Series 3 application about to start:

• the public name of the application

• the default extension for files used, if any

• any alias information specified in an alias file

• the full path name of the file to open, if any

• whether this file should be opened or created anew

• exceptionally, whether the application is to connect to the Window Server in background.

 When a program starts, its command line is placed in an allocated cell within the heap of the application,
with the address of this cell being written to the Epoc reserved static DatCommandPtr . See the section on
p_execc in the Plib Reference manual for some general information about DatCommandPtr .

 The command line for any Epoc program always starts with a zero-terminated string given the full path
name of the process being run. The byte after this gives the length of any following data. Ordinarily,
when referring to "the command line", it is this latter data that is in mind.

 For example, suppose the user presses TAB inside the Prog file list in the System Screen, navigates using
the file selector to loc::m:\dat\data.dbf, and then presses ENTER. The full command line passed to the
application thereby chosen (Word) is as follows:

 ROM::WORD.APP<0><29>OProgram<0>.OPL OROPO<0>LOC::M:\DAT\DATA.DBF<0>

SERIES 3/3A PROGRAMMING GUIDE

2-10

 The <29> immediately following the zero at the end of the first zero terminated string indicates that the
remainder of the command line is 0x29 bytes long - as is indeed the case.

 The next byte after this is the so-called command byte:

• a command byte of 'O' means, for a file-based application, that a named file is to be opened

• a command byte of 'C' means, for a file-based application, that a named file is to be created

• a command byte of 'D' means the application is to connect to the Window Server in background.

 A command byte of 'D' arises only for the built-in applications, and is not considered in the remainder of
this documentation. (When it does arise, it is handled automatically by code in hwim.dyl, which silently
translates it into one of the other two cases.)

 Following the command byte, there is a zero-terminated string giving the public name of the application.

 After this comes another zero-terminated string, containing both the default extension and (if present) the
alias info. The alias info, if present, is separated from the default extension by a space.

 Finally, yet another zero-terminated string gives the full path name of the file to open or create.

 With regard to the above example:

• The command byte of the application is 'O'

• The public name of the application is "Program"

• The default extension is ".OPL"

• The alias info is "OROPO"

• The name of the file to open is "LOC::M:\DAT\DATA.DBF" .

Summary of command line fo rmat

In summary, the format of the command line of a Series 3 application is as follows:

<command byte><public name><0>[<default extension>[<space><alias info>]<0><full
pathname><0>]

Supplying a co mmand line from the SIBO Debugger

Ordinarily, applications are executed from the System Screen, which automatically constructs a suitable
command line.

When executing an application from the Debugger (or from an alternative "Shell" program), the
command line has to be supplied explicitly. Some examples follow:

• SDBG TELE "CTELE",0,"LOC::M:\TEL\TELE.TEL" - debug the application tele giving it the public
name Tele , and have it Create the file LOC::M:\TEL\TELE.TEL on start up

• SDBG DA2 "ODAYS",0,"LOC::A:\ANN\DAYS.ANN" - debug the application da2 giving it the public
name Days , and have it Open the file LOC::A:\ANN\DAYS.ANN on start up

• SDBG JO1 "CJOKER",0,0 - debug the application jo1 (which is not file-based), giving it the public
name Joker .

These examples take advantage of the following processing of the command line by the Sibo Debugger:

• parameters entered as a string ("...") are passed on to the program with a zero terminating the
string

• parameters given in numeric form (eg 0) are passed on to the program as single bytes

• adjacent parameters separated by commas are concatenated.

One drawback of the command line processing of the Sibo Debugger should be pointed out: everything is
automatically upper-cased. This means that if an application button has, for example, been assigned to
the public name Days, no application run in this way from the Sibo Debugger will ever be tasked to as a
result of the user pressing the corresponding application button (for public names are in general case-
sensitive).

2 COMMUNICATING WITH THE SYSTEM SCREEN

2-11

From command line to reserved statics

As mentioned earlier in this chapter, an application should analyse its command line on start-up, and
should write various values from this command line into Epoc reserved statics as a result.

As an example of how this could be done, there follows the source code for two Hwif routines:

GLDEF_C VOID hSetUpStatusNames(TEXT *pb)
 {
 TEXT buf[P_FNAMESIZE];
 P_FPARSE crk;

 DatUsedPathNamePtr=pb;
 p_fparse(pb,0,&buf[0],&crk);
 DatStatusNamePtr=pb+P_FSYSNAMESIZE+crk.device+crk.path;
 }

GLDEF_C INT hCrackCommandLine(VOID)
 {
 INT ret;
 TEXT *pb;

 pb=DatCommandPtr;
 pb+=p_slen(pb)+1;
 if (!*pb++)
 ret=0;
 else
 {
 ret=(*pb++);
 DatProcessNamePtr=pb;
 pb+=p_slen(pb)+1;
 pb+=p_slen(pb)+1;
 if (*pb)
 hSetUpStatusNames(pb);
 else
 DatStatusNamePtr=DatProcessNamePtr;
 }
 return(ret);
 }

For details of the DatCommandPtr and other reserved statics see the Processes and Inter-Process
Messaging chapter of the Plib Reference manual.

Applications that di sregard their command line

Simple applications - especially those that are not file based - have no need to pay any attention to the
command line passed to them by the System Screen. In this case, the various relevant Epoc statics are left
at their default (zero) values. This fact is picked up by the System Screen and by other parts of the OS,
with the following results:

• The name displayed in any status window and in the file list in the System Screen is just that of
the application .app file

• If the user requests the application to be shut down, from the System Screen, the application is
shut down by the OS, without the application itself being informed of this fact (just as if the user
had selected the Kill option in the System Screen).

 In case an application wishes to do its own processing in response to a Shutdown request issued by the
user in the System Screen, it must therefore make a call to a routine such as hCrackCommandLine during
its initialisation. This is true even if the application is not file-based.

 One final drawback of an application not processing its command line is that users will be unable to
assign application buttons with any effect to that application. Suppose a user assigns CONTROL+WORLD to
a version of the Spy application, for example, that fails to write anything suitable to DatProcessNamePtr .
If the user subsequently presses the key combination CONTROL+WORLD, the Spy application will fail to be
brought into foreground - thus spoiling the whole purpose of assigning the application button.

SERIES 3/3A PROGRAMMING GUIDE

2-12

 Creat ing di rectories when re quired

 In contrast to file selectors on other systems, those on the Series 3 allow users to specify paths that do not
yet exist. This can happen fairly commonly, for example as follows:

• The user inserts a brand new solid state disk into drive A

• A Save as or New file menu command is invoked

• The user adjusts the disc selector to this new disk

• The user types eg "Backup" into the filename editor.

Then assuming the default directory for the application is \DIR\ and the default extension is .EXT, the
filename returned to the application is

LOC::A:\DIR\BACKUP.EXT

even though the directory \DIR\ does not exist yet, on the specified disk.

It is the responsibility of application programs to test for this case and to create the required directories.

Messages from the System Screen
Shutdown messages

Series 3 applications can receive Shutdown messages from the System Screen, as an instruction to shut
themselves down tidily, saving any changes to file as required.

These messages can arise when the user presses DELETE while highlighting a running task in the System
Screen. However, as mentioned above, if the application has set its DatLocked to TRUE, the System Screen
instead presents an Application is busy message.

Incidentally, applications are sent Shutdown messages only if they have a non-zero value of
DatProcessNamePtr . The System Screen assumes that any application that has left this Epoc reserved
static at its default (zero) value is unlikely to be prepared to respond to Shutdown messages. In that case,
the System Screen instead calls p_pterminate to terminate the application.

Finally, note that any application which has 4000 included in its application type number will never be
sent a Shutdown message from the System Screen; instead, the System Screen will display the message
Cannot quit application. Note that this blocking mechanism was designed for internal use only, and
should not be used without good reason.

Switchfiles messages

Series 3 applications can receive Switchfiles messages from the System Screen, as an instruction to close
down their existing open file, and to open or create another one.

These messages can arise when the user presses ENTER while highlighting a file within that application's
file list in the System Screen. However, if the application has set its DatLocked to TRUE, the System
Screen instead presents an Application is busy message.

Switchfile messages will only ever be sent to applications with basic type number 2 or 3. Applications
whose type numbers include 8000 can receive Switchfile messages of the Open sort, but not of the Create
sort.

How messages from the System Screen are received

There are two parts to an applications receiving a Shutdown or Switchfiles message from the System
Screen:

• the application receives notification that some message from the System Screen has been sent

• the application calls wGetCommand to determine the contents of the message.

In turn, the initial notification can be received in either of two ways, depending on whether the
application is receiving events from the Window Server directly (by calling wGetEvent or a variant), or as
"extended keypresses" via the console device (as occurs for example in Hwif programs):

• for the protocol in the first case, see the discussion on WM_COMMAND in the Window Server
Reference manual

• for the protocol in the second case, see the discussion on P_EVENT_READ in the Console chapter of
the I/O Devices Reference manual.

2 COMMUNICATING WITH THE SYSTEM SCREEN

2-13

In either case, the initial event prompts the application to call wGetCommand, to obtain the so-called new
command line giving more details about the event.

Contents of the new command line for System S creen messages

The parameter passed to wGetCommand must be the address of a buffer having at least P_FNAMESIZE (128)
bytes. The new command line is written into this buffer.

The first byte of the new command line will be one of 'X' , 'O' , or 'C' :

'X' means the command is a Shutdown message

'O' means the command is a Switchfiles message, with a specified file to be opened

'C' means the command is a Switchfiles message, with a specified file to be created.

In the case of Switchfiles messages, the remainder of the new command line gives the full pathname of the
file to open or create.

An example of code that responds to notification of a message from the System Screen is as follows:

LOCAL_C VOID ProcessSystemCommand(VOID)
 {
 UBYTE buf[P_FNAMESIZE];

 wGetCommand(&buf[0]);
 if (buf[0]=='X')
 ExitApplication();
 SaveIfChanged();
 if (buf[0]=='C')
 CreateNewFile(&buf[1]) /* remainder of message is ZTS of file to create */
 else /* buf[0]=='O' */
 OpenExistingFile(&buf[1]); /* remainder of message is ZTS of file to open */
 }

Other possible types of messages

At the time of writing, the command byte of new command lines (as read by wGetCommand) is restricted to
one of the three values 'X' , 'O' , or 'C' . It is possible, however, that some future application might send
messages to other applications having different command bytes.

These messages would be sent by means of the wSendCommand function, as described in the Window Server
Reference manual. (Note that these messages are not the same thing as IPC (inter-process
communication) messages; nor are they the same as object-oriented messages.)

In order to be future proof, an application should arguably test explicitly for all expected values of the
command byte, and should ignore values other than those expected. The above code fragment would
therefore need to be modified.

Multi-lingual aliasing of Word.app
This section can be omitted by all readers, except those who wish to write a multi-lingual alias of
Word.app.

The reason why .als files as created by makeals.exe cannot be used in this case is that these files have to
contain the public name of the application being aliased. However, the public name of Word.app can vary
from language to language, and there is no facility to track this within an ordinary .als file.

To surmount this problem, the .als file can be re-written as a program.

SERIES 3/3A PROGRAMMING GUIDE

2-14

For example, the following code provides a successful multi-lingual alias for Word.app:

#include <p_std.h>
#include <p_file.h>
#include <epoc.h>
#include <rscfile.xg>
#include <p_sys.h>

#define R_STRARRAY_APPNAMES 78

GLREF_D UBYTE *DatCommandPtr;

GLDEF_D TEXT olibDyl[]="OLIB.DYL";
GLDEF_D TEXT shellImg[]="ROM::SYS$SHLL.IMG";
GLDEF_D TEXT wordNameFmt[]="ROM::%s.APP";
GLDEF_D TEXT aliasInfo[]={'S','R','S','C','O'};

LOCAL_C TEXT *skipStr(TEXT *p)
 {
 return(p+p_slen(p)+1);
 }

#pragma save,ENTER_CALL

LOCAL_C INT getWordFspec(
/*
Get full file spec of Word.APP using shell's resource file.
Returns 0 if successful, leaves if error.
*/
 TEXT *fSpec) /* To receive name */
 {
 TEXT *pAppNames;
 VOID *rsc;
 HANDLE cat;

 p_findlib(&olibDyl[0],&cat);
 rsc=f_newlibh(cat,C_RSCFILE);
 p_send3(rsc,O_RS_INIT,&shellImg[0]);
 p_send4(rsc,O_RS_READ,R_STRARRAY_APPNAMES,&pAppNames);
 p_atos(fSpec,&wordNameFmt[0],skipStr(pAppNames+1)); /* Copy to 2nd string */
 p_free(pAppNames);
 p_send2(rsc,O_DESTROY);
 return(FALSE);
 }

2 COMMUNICATING WITH THE SYSTEM SCREEN

2-15

#pragma restore

GLDEF_C VOID main(VOID)
 {
 TEXT fSpec[P_FNAMESIZE];
 UBYTE comBuf[E_MAX_COMMAND_BUFFER+1];
 TEXT *pCommand;
 TEXT *pAlias;
 TEXT *pEndAlias;
 TEXT *p;
 HANDLE pId;
 INT len;

 p=skipStr(DatCommandPtr);
 len=(*p);
 pCommand=(p+1);
 pAlias=skipStr(pCommand);
 pEndAlias=skipStr(pAlias)-1; /* Point to end 0 */

 p=p_bcpy(&comBuf[0],pCommand,pEndAlias-pCommand);
 p=p_bcpy(p,&aliasInfo[0],sizeof(aliasInfo));
 p_bcpy(p,pEndAlias,len-(pEndAlias-pCommand));

 if ((pId=p_enter2(getWordFspec,&fSpec[0]))<0)
 goto fail;
 if ((pId=p_execc(&fSpec[0],&comBuf[0],len+5))<0) /* Run Word */
 goto fail;
 p_setpri(pId,p_getpri(p_getpid())-1);
 pId=p_presume(pId); /* Won't run till I've exited */
fail:
 p_exit(pId);
 }

This program uses the fact that the filename of the Word.app application is always stored in the 78th
resource within the resource file of the shell application. (Hence the #define of R_STRARRAY_APPNAMES as
78.) This resource actually contains an array of strings giving the filenames of the built-in applications,
with the filename of Word.app as the second element in the array.

See the chapter Resource Files in the Additional System Information chapter for background on creating
and using an instance of the rscfile class.

The program also analyses its own command line, and constructs a suitable one to pass on to Word.app.
The detailed working of the program can be followed using the information given earlier in this chapter.

SERIES 3/3A PROGRAMMING GUIDE

2-16

3-1

CHAPTER 3

ENHANCED SOUND OUTPUT

Introduction
The Series 3 and Series 3a provide distinct sets of sound services.

The Series 3 as supplied can emit only buzzer sounds, DTMF dialling tones, and simple alarm sounds.
However, by loading a suitable device driver, such as SNDFRC.LDD, the machine can also be made to
emit sequences of musical notes of variable duration, thus greatly extending its sound capabilities. The
first section of this chapter describes use of the SNDFRC.LDD attached device driver from within a simple
demonstration program.

The Series 3a has considerably greater sound capabilities than the Series 3. In addition to emitting buzzer
sounds, DTMF dialling tones and simple alarm sounds, the Series 3a can play simultaneously two
sequences of musical notes, and can play and record digital sound files - for details of playing and
recording digital sound files see the General System Services chapter of the Plib Reference manual. The
second section of this chapter describes a simple program that demonstrates the playing of sequences of
notes using the built-in SND: device driver.

Warning: any attempt to load and use the SNDFRC.LDD attached device driver on the Series 3a is a
serious error - the machine will in all probability hang, necessitating a soft reset.

Sound on the Series 3
Introduction

This section explains how to create a wider range of musical sound output, via the loudspeaker, than is
possible by merely using the Series 3's built-in SND: device driver.

These services rely on a dynamic extension to the Series 3 operating system, known as a loadable device
driver.

With this device driver installed, strings of sound covering two octaves in semitone intervals can be
generated. Control is also possible over the duration and loudness of the notes emitted.

The sndfrc and snddvr device drivers

The chapter Example Device Drivers in the Additional System Information manual describes two different
enhanced sound drivers, sndfrc.ldd and snddvr.ldd, from the point of view of how to write device drivers.
The current chapter focuses on the question, not how to write these drivers, but how to use them.

In fact, this chapter only considers the driver sndfrc.ldd, which is arguably the superior of the two. See
Example Device Drivers for a discussion on how the two device drivers differ.

Once this device driver file has been installed, a device with the name MUS: can be opened by applications.

Installing sndfrc.ldd

Any program which wishes to use the services of sndfrc.ldd needs to check, during its initialisation, that
this driver has been installed. This is necessary because, in contrast to some other device drivers such as
the serial port device driver and the basic sound device driver, the MUS: device driver is not built into the
ROM of the Series 3.

SERIES 3/3A PROGRAMMING GUIDE

3-2

The way to check the device driver is loaded is to make the call

p_loadldd("SNDFRC.LDD");

where the full path of the .ldd file can be given. (The .ldd file has to be copied onto the Series 3.)

The return values zero and E_FILE_EXIST can both happily be ignored. Other errors are more serious -
they probably mean that the file sndfrc.ldd cannot be located. In this case, the program cannot continue (at
least, not as according to its original intention).

Opening a channel to MUS:

Another pre-requisite to using the services of sndfrc.ldd is to open a channel to MUS:. This is done in the
standard manner for all i/o devices:

p_open(&handle,"MUS:",-1);

If this call is successful, it writes back the handle of the channel established to the device driver. All
subsequent requests from the program (until such time as the channel is closed) should be made via this
handle.

Possible errors from the p_open call include:

• "invalid arguments" - which probably means sndfrc.ldd has not been installed (or, having once
been installed, it has since been de-installed)

• "in use" or "locked" - another application is currently making use of the loudspeaker.

 In the second of these two cases, a brief retry philosophy might be adopted. If the channel still cannot be
opened, a suitable error message should be displayed - leaving it up to the user to retry at some later time.

 Actually creat ing sounds

 The way sounds are actually caused to be emitted is by using the P_FWRITE service of the MUS: channel.

 As for all device drivers, the P_FWRITE request can be made synchronously (eg using the utility function
p_write) or, for more quality applications, asynchronously. If the request is made asynchronously, it
allows the use of the P_FCANCEL service to interrupt and terminate a sequence of notes as they are playing.

 For example,

 p_ioc5(handle,P_FWRITE,&musstat,&buf[0],&len);

 to play a buffer of notes asynchronously.

 The parameter len (passed by reference) gives the number of notes in the buffer. The maximum allowed
value of len is 500. (For arbitrarily long sequences of notes, call the P_FWRITE service more than once.)

 Each note is specified by one UWORD in the buffer - so that buf would be declared as

 UWORD buf[]

 For each note, the UWORD contains three pieces of information: tone, length, and loudness.

 There are only four possible values of loudness: 0 (the quietest), 1, 2, and 3 (the loudest). The loudness is
multiplied by 64 before being added into the UWORD for the note.

 The duration is measured in 1/100ths of a second, and can have any value from 1 to 255 . The duration is
multiplied by 256 before being added into the UWORD for the note.

 The allowed values of tone range in principle from 0 to 0x3f . See below for more details.

3 ENHANCED SOUND OUTPUT

3-3

 Example

 #include <p_std.h>
#include <p_file.h>
#include <epoc.h>

GLDEF_C INT main(VOID)
 {
 INT ret;
 VOID *mcb;
 UWORD buf[10];
 UWORD len;
 WORD musstat;

 ret=p_loadldd("SNDFRC.LDD");
 if (ret && ret!=E_FILE_EXIST)
 return(ret);
 ret=p_open(&mcb,"MUS:",-1);
 if (ret)
 return(ret);
 buf[0]=0x30+(40<<8);
 buf[1]=0x32+(100<<8);
 buf[2]=0x34+(40<<8)+(1<<6);
 buf[3]=0x35+(100<<8)+(1<<6);
 buf[4]=0x37+(40<<8)+(2<<6);
 buf[5]=0x39+(100<<8)+(2<<6);
 buf[6]=0x29+(40<<8)+(3<<6);
 buf[7]=0x3b+(100<<8)+(3<<6);
 len=8;
 p_ioa5(mcb,P_FWRITE,&musstat,&buf[0],&len);
 p_iowait();
 return(0);
 }

 This plays a scale of eight notes, with notes having wavering length and increasing loudness.

 Possible tones

 There are three types of tones that the Series 3 loudspeaker hardware can emit: DTMF tones, modem
tones, and musical tones.

 For standard dual DTMF tones, set the tone part of the UWORD to: 0x10 for DTMF digit 0, 0x11 for digit 1,
..., 0x19 for digit 9, 0x1a for "digit" a, ..., 0x1d for "digit" d, 0x1e for * , and 0x1f for #.

 For modem tones, 0x24 gives 1300 Hz , 0x25 gives 2100 Hz , then 1200 , 2200 , 980 , 1180 , 1070 , 1270 , 1650 ,
1850 , 2025 , and 0x2f gives 2225 Hz .

 As for musical tones, twenty five notes are possible, incrementing by semi-tones over a 2-octave interval
from D#5 to D#7. The corresponding tone values are 0x30 , 0x31 , 0x32 , 0x33 , 0x34 , 0x35 , 0x36 , 0x37 , 0x38 ,
0x39 , 0x3a , 0x29 , 0x3b , 0x3c , 0x3d , 0x0e , 0x3e , 0x2c , 0x3f , 0x04 , 0x05 , 0x25 , 0x2f , 0x06 , and 0x07 .

 Pauses

 In order to pause, in the middle of a buffer of notes, set the tone value to 0 for one note.

 When to open and close MUS:

 An application that makes use of MUS: services from time to time ought to call p_close to free the sound
channel whenever it is not immediately needed. This allows other applications to make temporary use of
the sound channel - eg for alarms or for standard DTMF dialling dialogs.

 If you wrote a game which opened MUS: at its beginning, and only made sounds from time to time, and left
this game in background while you went to the Data application to look up a telephone number, you
would find the DTMF dialler would be unable to emit any sounds, and would report "Sound system in
use" - even though the game is silent at the time.

 Far better in these situations for a program to open MUS: just before it needs to use this channel, and then
close it again immediately afterwards.

SERIES 3/3A PROGRAMMING GUIDE

3-4

 When to install and de-install the ldd file

 Once sndfrc.ldd has been installed, it occupies about 1.7 K of RAM. For this reason, it would seem to be
best to de-install it, when the application terminates. The way to do this is to call (see the Plib Reference
manual for more details)

 p_devdel("MUS:",E_LDD);

 This call will fail if another application currently has an open channel to MUS:. Applications should ignore
any errors from p_devdel .

 Note however that if an application has:

• called p_loadldd to ensure MUS: can be found

• called p_open to open a channel to MUS:

• played some notes

• called p_close to free up the sound channel

 then it cannot rely on MUS: still being installed if it calls p_open again at a later stage. For another
application may have called p_devdel , successfully, in the meantime.

 The upshot of this is that applications should call p_loadldd prior to any call to open a channel to MUS:.

 Sound on the Series 3a
 This section does not make reference to the recording and playing of digital sound - for details see the
General System Services chapter of the Plib Reference manual.

 The Series 3a's built-in SND: device driver can be used to simultaneously play two tunes on the built-in
speaker. Although the sound quality is not as high as with digital sound files, the memory requirements
are much less. For example to play a tune lasting six seconds would require a digital sound file of size
49,184 bytes. A comparable figure using the SND: device driver would be less than 1 Kb.

 The demonstration program sound.c (in \SIBOSDK\DEMO on the supplied disks) plays two sequences of
notes using both channels of the built-in SND: sound device driver (only one application can have access to
these channels at any given time). The tune is the so-called "ice cream van" tune that you may already
have met in the Sound chapter of the i/o Devices manual - it is in any case recommended that you read
that chapter before proceeding.

 The program demonstrates the following:

• the opening and closing of a channel to the SND: device driver.

• the sensing and setting of the volume level and the number of beats per minute.

• the writing of notes to the two sound channels.

 A number of points are worth making:

• a side effect of opening a channel to the SND: device driver is to power up the speaker. As a
consequence the SND: channel should be closed as soon as the sound has been played - failure to
do so could unnecessarily drain the batteries.

• the SND: device driver, and hence the speaker, can only be used by one application at a time. As
alarms and keyclicks will be disabled well written programs should close the SND: channel as
soon as the sound has been played.

• a serious of notes separated by silences can be created by setting the frequency to zero during the
silent periods.

• the sound will not play until a P_FSSOUNDCHANNELn request has been made on both channels. The
playing of sound on the two channels is thus automatically synchronised.

• both P_FSSOUNDCHANNELn requests must be made asynchronously using p_ioc or the p_ioc5

variant. On a low battery the request will fail to complete with an error message written to the
status word. Use of p_iow , p_iow4 , p_ioa and/or p_ioa5 would hang the machine on a low
battery - a very serious programming error.

3 ENHANCED SOUND OUTPUT

3-5

• sound can be played on only one channel by passing the other channel a length of zero for the
note buffer - i.e. zero notes.

• the P_FSET service sets both the volume and the beats per minute. The P_FSENSE service can
be requested first to ensure that one or other parameter remains unchanged.

To create a sound.img file simply type make sound in the appropriate directory. This file can then be
copied to a m:\img directory on the Series 3a and run via the RunImg application in the usual manner.

The code in sound.c is as follows:

#include <p_std.h>
#include <p_file.h>
#include <epoc.h>

GLDEF_C VOID waitstat2(WORD *pstat1, WORD *pstat2)

/* Wait for *pstat!=E_FILE_PENDING and *pstat2 != E_FILE_PENDING */

 {
 INT i;

 i = -1;
 do
 {
 p_iowait();
 i++;
 }
 while (*pstat1 == E_FILE_PENDING && *pstat2 == E_FILE_PENDING);

 if (*pstat2 == E_FILE_PENDING)
 pstat1 = pstat2;
 p_waitstat(pstat1);

 while (i--)
 p_iosignal();
 }

GLDEF_C VOID play_notes(WORD *buf1, WORD *buf2, WORD l1, WORD l2, INT volume, INT
beatsPerMinute)

 {
 VOID *pcb;
 WORD sndstat1,sndstat2;
 E_SOUND sound;
 INT err;

 if ((err=p_open(&pcb,"SND:",-1))<0)
 {
 p_close(pcb);
 p_exit(err);
 }

 if ((err=p_iow3(pcb,P_FSENSE,&sound))<0)
 {
 p_close(pcb);
 p_exit(err);
 }

 if (beatsPerMinute >= 0)
 sound.beatsPerMinute = (UBYTE) beatsPerMinute;

 if (volume >= 0)
 sound.volume = (UBYTE) volume;

 if ((err=p_iow3(pcb,P_FSET,&sound))<0)
 {
 p_close(pcb);
 p_exit(err);
 }

SERIES 3/3A PROGRAMMING GUIDE

3-6

 p_ioc5(pcb,E_FSSOUNDCHANNEL1,&sndstat1,&buf1[0],&l1);
 p_ioc5(pcb,E_FSSOUNDCHANNEL2,&sndstat2,&buf2[0],&l2);
 waitstat2(&sndstat1,&sndstat2);

 p_close(pcb);

 if (sndstat1 != 0 || sndstat1 != 0)
 p_exit(0));

 }

GLDEF_C INT main(VOID)

 {
 WORD notes1[] = {1048,24,524,12};
 WORD notes2[] = {1048,4,1320,4,1568,4,2092,4,1568,4,1320,4,1048,12};
 WORD len1 = sizeof(notes1)/4,len2 = sizeof(notes2)/4;
 INT i;

 for (i = 0; i < 6; i++)
 {
 play_notes(¬es1[0],¬es2[0],len1,len2,i,-1)
 p_sleep(1);
 }

 for (i = 0; i < 6; i++)
 {
 play_notes(¬es1[0],¬es2[0],len1,len2,-1,140 + i*20)
 p_sleep(1);
 }
 return(0);
 }

The main routine initialises the note buffers, then repeatedly passes the buffers, the buffer lengths, the
volume and the beats per minute, to the subroutine play_sound that plays the tune. The tune is repeated
first at the default beats per minute for all six allowed volume levels, and then at the default volume for
six values of the beats per minute. The default is specified by passing a negative integer for the volume
and/or the beats per minute.

The subroutine play_sound opens the SND: channel, senses and sets the volume and beats per minute,
plays the notes and closes the SND: channel. In the case of an error in, for example, sensing, play_sound

closes the SND: channel and returns with an error code. As mentioned earlier it is essential that the
P_FSSOUNDCHANNELn requests be made asynchronously using either p_ioc or p_ioc5 Plib library routines,
as these guarantee completion even in the event of low batteries.

A large fraction of the code in play_sound is concerned with error checking in order to ensure that the
routine behaves in a sociable way. In particular the SND: channel is closed as soon as an error is
discovered so to conserve power - this is essential when running on batteries and such measures should be
standard in any quality application.

The subroutine waitstat waits on the process i/o semaphore until completion of the two asynchronous
requests specified by the pstat1 and pstat2 status words (for further details of such matters see the
Asynchronous Requests and Semaphores chapter of the Plib Reference library). It is in fact a version of
the Plib library routine p_waitstat that waits on two status words rather than one.

The return(0) statement at the end of the main routine informs the Series 3a that the program has ended
normally: it can also be omitted entirely. Use of the return statement with no return value is not
recommended: in practice this will return a random error code possibly leading to the display of a
spurious full screen error message.

4-1

CHAPTER 4

USE OF SPY.APP

Introduction
This chapter describes the Spy application for the Series 3. This application contains many features that
may help to "debug" problems with applications on the Series 3.

The version of Spy described in this chapter is suitable for use on both the Series 3 and the Workabout,
and can also be used on the Series 3a. A built version of spy.app that is specifically designed for use on
the Series 3a will be found, following installation of the core SDK software, in the \sibosdk\s3atool
directory.

Building spy.app

The Spy application is released in source form, as one of the Hwif demonstration programs.

To build it, proceed in the same way as to build any of the other Hwif demonstration programs:

• move into the \sibosdk\hwdemo directory

• type make spy

• the resulting image file spy.img can be renamed to spy.app and copied into a \app directory on
the Series 3 or the Workabout

• the application can be installed in the System Screen and, on the Series 3, even assigned an
application button - eg CONTROL+WORLD.

 The main display
 The main display is a scrolling list of processes currently running on the Series 3. The Change processes
menu option allows customisation of which processes are shown. "System" processes are simply ones
whose names start with "Sys$", and include:

• sys$shll - which the user sees as the System Screen

• sys$wsrv - the Window Server, which coordinates access to the screen and keyboard

• sys$fsrv - the File Server, which coordinates access to the filing systems

• sys$mang - the Manager, which keeps track of all resources used by processes (so that, for
example, they can be properly tidied whenever processes exit)

• sys$ncp - the "brains" behind Remote Link (when it is running).

The Null process, sys$null, which performs the vital task of switching the Series 3 off following sufficient
inactivity, is omitted from the list displayed, for various technical reasons.

First letter matching works in the main window, so that eg pressing 'C' enough times will position the
highlight to the Calc process.

Arrows are drawn in the top right and bottom right corner, Agenda-wise, whenever there are more
processes beyond the visible boundaries of the list.

SERIES 3/3A PROGRAMMING GUIDE

4-2

The data displayed is updated every time Spy comes into foreground, and also whenever the Update menu
option is selected. By default, it is also updated regularly on a timer, though this can be disabled by a
menu option. The Refresh rate option governs how frequently updates take place, when the timer is
enabled.

There are in all twelve pieces of data that can be displayed for each process, but only three of these can be
seen at any one time. Use the Change data menu option to choose which.

Many of the data items can be meaningfully displayed either in Hex or in Decimal. Another menu option
controls this.

Heap statistics

Five of the twelve possible items of data concern the allocator heap of the process. Each process has its
own heap, which can vary in size according to the needs of the program. Thus a Word Processor editing a
large document will typically have a larger heap than a Word Processor editing a smaller document.

Each heap is divided into "alloced cells" and "free cells". The items "Cells allocated" and "Cells free"
count these, and the items "Bytes allocated" and "Bytes free" sum how many bytes belong in each
category.

This data can be of great help in developing applications. It is of course vital that an application frees
cells it no longer requires - otherwise these cells go to what is called "alloc heaven". Something to watch
for in particular is alloc heaven following an out-of-memory failure. Typically, a process such as
launching a dialog involves a number of different allocs; if any one of these fails, all the allocs which have
already succeeded must be undone. System code provides mechanisms such as "automatic destruction"
and "automated clean-up" to help applications here, but applications can use these incorrectly at times -
hence the need for real-time checking.

Stack statistics

Whenever a process starts, its stack is filled up with 0xFF 's. This makes it easy to see how much stack has
been used, at any one time. Quality programs need to avoid having too large a stack - the built-in
applications default to a stack of 0xa00 . On the other hand, the operating system panics them (panic 69)
if it ever discovers that their stack is less than 0x100 . This is because whenever an interrupt occurs, it
runs in the stack of the current process.

The Reset least stack menu option simply refills the bottom of the process's stack with 0xFF 's (ie up to its
present stack pointer).

Segment statistics

The "Segment size" of a process gives the size of its data segment - which consists of the heap, static data
private to the application, the stack, and finally the Epoc reserved statics at the bottom end. The quoted
"Segment size" of an application can sometimes give a misleading account of how much memory it is
actually using - since there are free cells as well as alloced cells in the heap. From time to time, the
operating system may try to compress these heaps, but it can only do this by removing any free cells at the
end of the heap. Applications should strive to avoid ending up with large free cells in the middle of their
heap - though this is a very difficult goal to achieve.

Tests for heap integrity

Whenever Spy collects heap statistics for an application, it also checks the heap integrity. Any defect
(caused for example by writing beyond the end of an alloc cell, or freeing a cell that was never alloced)
results in an immediate alert. This alert helps to pin-point problems which would otherwise only rear
their head much later - long after the real damage has been done.

Process priorities

The Process Priority gives the pecking order of the processes, as regards gaining CPU from the multi-
tasking scheduler. Most applications the user sees run at 0x80 when in foreground, and at 0x70 when in
background. This prevents computationally busy background tasks from detracting from the performance
of the foreground task.

Spy momentarily ups its own priority to a massive 0xc0 (the maximum allowed to non-OS processes)
whenever it collects heap statistics from other processes, to lessen the chances of other processes
manipulating their heaps at the same time as Spy is walking through them. Occasionally, Spy will find
that a heap is momentarily marked as "locked" when it tries to survey it - this indicating that the
Operating System is busy doing something there - in which case the heap statistics will all just be shown
as 0 for that process.

4 USE OF SPY.APP

4-3

Other data

The "Process ID" of a process is essentially the address of the control block of the application in the
Operating System data space, although the top nibble reflects how many times that same slot has been re-
used since the last reset (the top nibble will therefore always be zero for sys$mang, sys$fsrv, and
sys$wsrv). When processes talk to each other, for example in conjunction with the Bring menu option,
they need to know each other's PID ("Process ID").

The IO Semaphore count basically keeps track of how many outstanding events a process has to respond
to. This will usually be -1 or zero, but if you task to the System Screen and then straight back to Spy
again, you may see the count for sys$shll momentarily go as high as three.

Logging Window S erver statistics

The menu command Log client produces information in text file form as to the structure of the windows,
GCs, fonts, bitmaps, and other Window Server objects "owned" by an application. This information may
of use in determining why certain drawing fails to appear on the screen. For example, it may be that a
window is positioned wrongly, that the window is obscured by another, or that the current GC is set up
incorrectly - any such failure can be seen from the log file.

The menu command Log all clients repeats this process for all the clients of the Window Server.

The Log client command can, in effect, be invoked even when Spy is in background. Just press the key
combination SHIFT+CONTROL+PSION+N and a dump of the Window Server object usage of the foreground
application will be created - by default in the file \opl\wsreport.lis. (This feature works because Spy has
"captured" this key combination.)

SERIES 3/3A PROGRAMMING GUIDE

4-4

A - 1

APPENDIX A

TECHNICAL SPECIFICATIONS

Psion's continuing product development and improvement programs mean that specifications and features
are subject to change at any time and without notice.

Psion Series 3a Technical Specification
Physical characteristics

Part numbers: 1600-0029-10 (256KB)
1600-0025-10 (512KB)
1600-0080-10 (1MB)
1600-0082-10 (2MB)

Size 165mm x 85mm x 22mm (6.5"x 3.0"x 0.9").

Weight 275g (including batteries).

Screen 480 x 160 pixel high contrast retardation film LCD.
Size 131.6mm x 45.2mm, (4.915" x 1.637").
Pixel pitch 0.26mm x 0.26mm
Pixel size 0.23mm x 0.23mm.

Keyboard 58 key, QWERTY layout, computer style keyboard (UK models).
8 touch sensitive icon buttons for application selection.

Sound and recording Loudspeaker with DTMF dialling and digital sound playback.
Microphone for digital sound recording.

Power supply

Internal 2 x AA batteries.

Backup 3V Lithium CR1620 battery.

External A Psion Series 3 mains adaptor, (9-11V 250mA), (Note: earlier models 175mA).
Vehicle power adaptor (24v & 12v cigarette lighter sockets), from Jan/Feb 1997.

Memory

Built in 2MB or 1MB Masked ROM and 2MB, 1MB, 512KB or 256KB RAM.

Two SSD drives allow extra storage space on Flash/RAM SSDs, up to 8MB.

System information

Processor NEC V30H running at 7.68MHz.

Operating system EPOC.
Microsoft MS-DOS compatible Flash Filing System.

SERIES 3/3A PROGRAMMING GUIDE

A - 2

Expansion

Peripherals External peripherals (such as a modems and printers) can be connected via a
fast serial interface (1.536 Mbits/sec), which accepts optional 3Link parallel
and serial interfaces. The Serial 3Link allows communication with other
computers.

PC Card adapter. SMS cables for Nokia and Orange mobile phones.

3Fax fax modem, (superseded by PC Card adapter).

Socket: 6-way two row rectangular (male, with retracting protective cover).
See the section ‘The 15-way SIBO/RS232 connector' in the 'SIBO Expansion
Ports' chapter in the Hardware Reference manual for pinout details.

Environment

Operating temperatures 0ºC to 50ºC.

EMC FCC Part 15 Class B; CE Mark

Psion Series 3/3s Technical Specification
These models are no longer in production.

Physical characteristics

Size 165mm x 85mm x 22mm (6.5"x 3.0"x 0.9").

Weight 265g (including batteries).

Screen 240 x 80 pixel high contrast retardation film LCD.
Size 97.3mm x 38.9mm.
Pixel pitch 0.385mm x 0.43mm
Pixel size 0.355mm x 0.4mm.

Keyboard 58 key, QWERTY layout, computer style keyboard (UK models).
8 touch sensitive icon buttons for application selection.

Sound Piezo buzzer.
Loudspeaker with DTMF dialing.

Power supply

Internal 2 x AA batteries.

Backup 3V Lithium CR1620 battery.

External A Psion Series 3 mains adaptor, (9-11V 250mA), (Note: earlier models
175mA).
Vehicle power adaptor (24v & 12v cigarette lighter sockets), from Jan/Feb
1997.

Memory

Built in Series 3 has 384KB or 512KB Masked ROM and 128KB or 256KB RAM,
Series 3s has 512KB Masked ROM and 256KB RAM.

Two SSD drives allow extra storage space on Flash/RAM SSDs, up to 8MB.

System information

Processor NEC V30H running at 3.84MHz.

Operating system EPOC.
Microsoft MS-DOS compatible Flash Filing System.

APPENDIX A: TECHNICAL SPECIFICATIONS

A - 3

Expansion

Peripherals External peripherals (such as a modems and printers) can be connected via
the fast serial interface (1.536 Mbits/sec), which accepts optional 3Link
parallel and serial interfaces. The Serial 3Link allows communication with
other computers.

Socket: 6-way two row rectangular (male, with retracting protective cover).
See the 'Reduced External Expansion' section of the 'SIBO Expansion Ports'
chapter in the Hardware Reference manual for pinout details.

Environment

Operating temperatures: 0ºC to 50ºC.

EMC: FCC Class B; EN55022 Class B

Psion Series 3c Technical Specification
Physical characteristics

Part numbers: 1600-0126-10 (1MB)
1600-0122-10 (2MB)

Size 165mm x 85mm x 22mm (6.5"x 3.0"x 0.9").

Weight 275g (including batteries).

Screen 480 x 160 pixel high contrast retardation film LCD.
Size 131.6mm x 45.2mm, (4.915" x 1.637").
Pixel pitch 0.26mm x 0.26mm
Pixel size 0.23mm x 0.23mm.

Keyboard 58 key, QWERTY layout, computer style keyboard (UK models).
9 touch sensitive icon buttons for application selection.

Sound and recording Loudspeaker with DTMF dialing and digital sound playback.
Microphone for digital sound recording.

Power supply

Internal 2 x AA batteries.

Backup 3V Lithium CR1620 battery.

External A Psion Series 3 mains adaptor, (9-11V 250mA), (Note: earlier models
175mA).
Vehicle power adaptor (24v & 12v cigarette lighter sockets), from Jan/Feb
1997.

Memory

Built in 2MB Masked ROM and 1MB or 2MB RAM.

Two SSD drives allow extra storage space on Flash/RAM SSDs, up to 8MB.

System information

Processor NEC V30H running at 7.68MHz.

Operating system EPOC.
Microsoft MS-DOS compatible Flash Filing System.

Communications

Infrared: IrDA SIR optical link, for IR communications and printing.

Protocols: XMODEM, YMODEM and ZMODEM, (except from Comms Script in early
models), giving compatibility with most computer communications software.

Language Full script language with sample scripts allows automated log-on to
electronic mail and other systems, and control of modems.

SERIES 3/3A PROGRAMMING GUIDE

A - 4

Expansion

Peripherals External peripherals (such as a modems and printers) can be connected via
the RS232 port which accepts optional PC Link and Parallel Printer Link
cables. The PC Link allows communication with other computers.

Travel Modem. PC Card adapter. SMS cables for Ericsson, Nokia and
Orange mobile phones.

Socket: 15-way Honda type custom connector
See the section ‘The 15-way SIBO/RS232 connector' in the 'SIBO Expansion
Ports' chapter in the Hardware Reference manual for pinout details.

Environment

Operating temperatures: 0ºC to 50ºC.

EMC: FCC Part 15 Class B; CE Mark

Safety: EN60950

Psion Siena Technical Specification
Physical characteristics

Part numbers: 1010-0003-01 (1MB)
1010-0002-01 (512KB)

Size 150mm x 70mm x 18mm (5.9"x 2.7"x 0.7").

Weight 180g (including batteries).

Screen 240 x 160 pixel high contrast retardation film LCD.
Size 60.0mm x 40.0mm, (2.36" x 1.57").
Pixel pitch 0.25mm x 0.25mm
Pixel size 0.23mm x 0.23mm.

Keyboard 48 key, QWERTY layout, computer style keyboard (UK models).
20 key calculator keypad
8 touch sensitive icon buttons for application selection.

Sound Piezo buzzer.

Power supply

Internal 2 x AAA batteries
giving approximately 40hrs use (2 months typical usage).

Backup 3V Lithium CR1620 battery.

External From a Siena SSD Drive

Memory

Built in 1MB Masked ROM and 512KB or 1MB RAM.

System information

Processor NEC V30H running at 7.68MHz.

Operating system EPOC.
Microsoft MS-DOS compatible Flash Filing System.

APPENDIX A: TECHNICAL SPECIFICATIONS

A - 5

Communications

Infrared: IrDA SIR optical link, for IR communications and printing.
The Siena does not have the DYL file in ROM to support the AccessIr API
(for Infrared beaming), this is provided with this SDK and must be loaded
before third party programs using this API can be used.
The Siena does not have the DYL file in ROM to support the IrLPT API (for
Infrared printing), this must be loaded before third party programs using this
API can be used.

Expansion

Peripherals External peripherals (such as a modems and printers) can be connected via
the RS232 port which accepts optional PC Link and Parallel Printer Link
cables. The PC Link allows communication with other computers.

External SSD Drive, via 1.536Mbits/sec Fast Serial interface.

PC Card adapter. SMS cables for Ericsson, Nokia and Orange mobile
phones.

Socket: 15-way Honda type custom connector
See the 'Reduced External Expansion' section of the 'SIBO Expansion Ports'
chapter in the Hardware Reference manual for pinout details.

Environment

Operating temperatures: 0ºC to 50ºC.

EMC: FCC Part 15 Class B; CE Mark

Safety: EN60950

Psion Siena SSD Drive Technical Specification
Physical characteristics

Part number: 1011-0005-01

Compatibility: Psion Siena only

EMC: FCC Part 15 Class B; CE Mark

Safety: EN60950

Size 118mm x 69mm x 15mm (4.62"x 2.7"x 0.6"), (pre-production model).

Weight 87g, including flying lead, (pre-production model).

Power input: A Psion Series 3c mains adaptor, (9-11V 250mA), (supplied with the drive).

Power output: Power is supplied to a connected Siena via the RS232 connector.

Connectors: 15-way Honda type custom plug on flying lead to connect to the Siena
15-way Honda type custom socket to connect to a PC (for use with PsiWin)

SSD slots: One SSD slot; accepts all capacities of Flash/RAM SSD.

Psion Serial 3Link Technical Specification
The Serial 3Link comes in two versions, one for IBM PC compatible computers and the other for Apple
Macintosh machines.

Part number (PC):

Part number (Apple):

1601-0001-01 (cable only)
1601-0039-11 (with PsiWin software)
1601-0002-10 (with V1.41 software)

Compatibility: Series 3, Series 3a
(The Psion Series 3c and Psion Siena machines use a different type of
communications cable, the PC Link cable.)

EMC FCC Part 15 Class B; CE Mark

SERIES 3/3A PROGRAMMING GUIDE

A - 6

Safety: EN60950

Physical Pod with lead for connection to the Series 3 or LIF adaptor.
Pod incorporates "auto wake up" switch.
Replaceable lead to connect the pod to the other computer or peripheral.
Complete connection is functionally equivalent to a 'null modem' cable.

Interface RS232.

Memory Masked ROM in the 3Link pod. This contains the script language and
supporting communications software. The pod appears as SSD drive C.

Protocols XMODEM and YMODEM, giving compatibility with most computer
communications software.

Language Full script language with sample scripts allows automated log-on to
electronic mail and other systems, and control of modems.

Communications
software

Link and/or RCom and/or PsiWin software supplied provides a simple
interface for exchanging information with IBM PC compatibles and with the
Apple Macintosh, giving direct remote file access.

Connectors - IBM PC 9-pin D-type (for connection to an IBM AT type PC or modem serial
port).

25-pin D-type (for connection to an IBM XT type PC or modem serial port.
Note: The model currently distributed through retail channels only has a
9-pin D-type connector, but the Serial 3Link assembly is available as
separate cables and pod - see below).

Pin name Description Pin number Direction
PC - 3Link

FG Frame Ground
(earth)

1 

TD Transmitted Data 2 →
RD Received Data 3 ←
RTS Request To Send 4 →
CTS Clear To Send 5 ←
DSR Data Set Ready 6 ←
SG Signal Ground

(common return)
7 

DTR Data Terminal Ready 20 →
Connector - Apple Mac 8-pin round

Connectors
- both versions

6-way two row rectangular (female) plug
for connection to the Series 3 serial port, or Psion LIF adaptor (Workabout).
See the 'Reduced External Expansion' section of the 'SIBO Expansion Ports'
chapter in the Hardware Reference manual for pinout details.

9-pin round (Internal connector on the 3Link pod)

Pin name Description Pin number Direction
Series 3 - Other

DCD Data Carrier Detect 1 ←
RD Received Data 2 ←
TD Transmitted Data 3 →
DTR Data terminal Ready 4 →
SG Signal Ground

(common return)
5 →

DSR Data Set Ready 6 ←
RTS Request To Send 7 →
CTS Clear To Send 8 ←
RI Ring Indicator 9 ←

See below for diagram of pinout.

APPENDIX A: TECHNICAL SPECIFICATIONS

A - 7

9 8 7

6 5 4 3

2 1

See the Psion Series 3 3Link (RS232) manual provided with the 3Link for full details of operation.

PC Serial 3Link assembly com ponents

The PC Serial 3Link assembly is available as separate components with the following part numbers:

RS232 Cable 3Link Pod and cable to Psion 2500 0005 10

9 Pin Cable to PC 2303 0004 02

25 Pin Cable to PC 1404 0003

Double headed Cable to PC 2303 0016 02

PC Serial 3Link to Apple Macintosh con verter

This converter changes a PC Serial 3Link into an Apple Macintosh Serial 3Link:

2 x disks, 1 x cable, 1 x manual 1601 0019 01

Modem Adaptor cable

This converter changes a Series 3a PC/Mac Serial 3Link cable so that the Psion can be connected to a
Hayes compatible modem:

Series 3a Serial 3Link Modem Adaptor cable 1404 0002

Serial Printer cable (Series 3a)
- Technical Specification
Part number: 1404 0001

Compatibility: Psion Series 3/3s and Psion Series 3a only.

EMC: FCC Part 15 Class B; CE Mark

Safety: EN60950

Connectors: 6-way two row rectangular (female) plug
for connection to the Series 3/3s/3a serial port.
See the 'Reduced External Expansion' section of the 'SIBO Expansion Ports'
chapter in the Hardware Reference manual for pinout details.

RS-232 25 way D-type connector (male).

SERIES 3/3A PROGRAMMING GUIDE

A - 8

Serial Printer cable (Series 3c/Siena)
- Technical Specification
Part number: 1602-0017-01

Compatibility: Psion Series 3c and Psion Siena only.

EMC: FCC Part 15 Class B; CE Mark

Safety: EN60950

Connectors: Low Profile Honda type custom connector

RS-232 25 way D-type connector (male)

Psion PC Link cable Technical Specification
The Psion Series 3c and Psion Siena machines use this new type of communications cable.

Part number: 2013-0002-01 (cable only - available to developers by special request)
1011-0010-01 (with PsiWin software)

Compatibility: Psion Series 3c and Psion Siena only.
To connect to other devices with 25 way D-type connectors, adapters are
needed, (see Psion 9-to-25 way D-type adapters Technical Specification)

EMC: FCC Part 15 Class B; CE Mark

Safety: EN60950

Connectors: Low Profile Honda type custom connector
RS-232 9 way D-type connector (IBM AT type)

Modem Adaptor cable

This converter changes a Series 3c/Siena PC/Mac Link cable so that the Psion can be connected to a
Hayes compatible modem:

Series 3c Serial Link Modem Adaptor cable 1602 0016 01

Psion Mac Link cable Technical Specification
The Psion Series 3c and Psion Siena machines use this new type of communications cable.

Part number: 1601-0101-01

Compatibility: Psion Series 3c and Psion Siena only.

EMC: FCC Part 15 Class B; CE Mark

Safety: EN60950

Connectors: Low Profile Honda type custom connector
RS-232 (Apple connector)

APPENDIX A: TECHNICAL SPECIFICATIONS

A - 9

Psion 9-to-25 way D-type adapters
- Technical Specification
The Psion series 3c and Psion Siena machines use a different type of communications cable from
preceding machines;- the Psion PC Link cable. To connect to other 25 way D-type connector devices,
adapters are needed as, unlike the 3Link cable, this is a single cable and can’t be split to change the RS-
232 half to connect to a serial printer or modem.

The new PC Link and 3Link cables use the pins on the D-type plugs in a unique way. This means that a
unique mapping from 9-to-25 way pinouts is required, so special adapters (i.e. non-industry standard)
have been designed to provide this unique mapping.

Except in special cases, these adapters replace the need for the old RS-232 serial printer and modem
cables for 3Link users. In addition, these adapters allow connection of a 3Link or PC Link cable to a PC
with 25 way communication ports.

The three types of Psion branded RS232 9-to-25 way D-type adapters allow any Psion cable with a 9 way
D-type connector to be connected to another machine with a IBM XT type PC 25 way D-type port or
modem or printer serial port.

Adapter Part number EMC Safety

Modem 1602 0016 01 FCC Part 15 Class B; CE Mark EN60950

Serial Printer 1602 0017 01 FCC Part 15 Class B; CE Mark EN60950

PC (XT) 1602 0015 01 FCC Part 15 Class B; CE Mark EN60950

Modem 9-to-25 way D-type adapter - wiring diagram

9 way D - male 25 way D - male
RX - pin 3 pin - 3
TX - pin 2 pin - 2

DTR - pin 6 pin - 20
GND - pin 5 pin - 7
DSR - pin 4 pin - 6
RTS - pin 8 pin - 4
CTS - pin 7 pin - 5
DCD - pin 9 pin - 8

SHELL pin - 1
SHELL

PC (XT) 9-to-25 way D-type adapter - wiring diagram

9 way D - male 25 way D - female
RX - pin 3 pin - 2
TX - pin 2 pin - 3

DTR - pin 6 pin - 6
GND - pin 5 pin - 7
DSR - pin 4 pin - 20
RTS - pin 8 pin - 5
CTS - pin 7 pin - 4
DCD - pin 9 pin - 7

SHELL pin - 1
SHELL

SERIES 3/3A PROGRAMMING GUIDE

A - 10

Printer 9-to-25 way D-type adapter - wiring diagram

9 way D - male 25 way D - male
RX - pin 3 pin - 2
TX - pin 2 pin - 3

DTR - pin 6 pin - 6
GND - pin 5 pin - 7
DSR - pin 4 pin - 20
RTS - pin 8 pin - 5, 8
CTS - pin 7 pin - 4
DCD - pin 9 pin - 7

SHELL pin - 1
SHELL

Psion Parallel 3Link Technical Specification
Part number: 1601-0003-10

Compatibility: Psion Series 3, Psion Series 3 and Psion Workabout with LIF adaptor only
(The Psion Series 3c and Psion Siena machines use a different type of printer
cable, the Parallel Printer Link cable.)

EMC: FCC Part 15 Class B; CE Mark

Interface: Centronics interface for parallel printers

Connectors: 6-way two row rectangular (female) custom plug, for connection to the
Series 3 or Series 3a serial port, or Psion LIF adaptor (Workabout).
See the 'Reduced External Expansion' section of the 'SIBO Expansion Ports'
chapter in the Hardware Reference manual for pinout details.

Centronics (for connection to the parallel port of a printer)

Psion Parallel Printer Link cable
- Technical Specification
Part number: 1011-0017-01

Compatibility: Psion Series 3c and Psion Siena only
The Parallel Printer Link is not for use with the Series 3, Series 3a, MC, HC
or Workabout, (The Psion Series 3 and Psion Series 3a machines use a
different type of printer cable, the Psion Parallel 3Link cable.)

EMC: FCC Part 15 Class B; CE Mark

Safety: EN60950

Connectors: Low Profile Honda type custom connector
Centronics connector (to connect to a Centronics type parallel printer port)

Power: One 9V PP3 battery.
With typical usage, the expected life from a new battery is 150 hours.
Power is only consumed when printing.

APPENDIX A: TECHNICAL SPECIFICATIONS

A - 11

Psion PC Card Modem Adapter
- Technical Specification
Variants

There are three variants:

• Series 3a

• Series 3c

• PC

 The PC Card Modem Adapter with a suitable PC Card modem, combined with the PsiFax software,
supersedes the 3Fax modem and software for the Series 3a. For the Series 3c there is also the alternative
Travel Modem.

 Physical characteristics

 Part number: Series 3a variant:2501-0223-01 (unboxed, not retail)
Series 3c variant: 2501-0224-01 (unboxed, not retail)
PC variant: 2501-0225-01 (unboxed, not retail)

 Compatibility: Psion Series 3a - Series 3a variant only
Psion HC - Series 3a variant only, with LIF connector module & LIF adapter
Psion Workabout - Series 3a variant only, with LIF adapter
Psion Series 3c - Series 3c variant only
PC - PC variant only

 The PC Card Modem Adapter will work with Psion’s corporate and personal
email applications and standard communications applications. Current
versions of 3Fax software will not work with the PC Card Modem Adapter.
New versions of 3Fax software, renamed as PsiFax, are available to work
with the adapter.

 EMC: EN55022, EN500082-1

 Safety: EN60950

 Size 118.5mm x 91mm x 20.5 mm

 Weight 105g without batteries

 Processor: Siemens C165 16 bit micro-controller

 Memory: OTP.

 Power: 4 x AA batteries
and/or
6V DC/1A mains adapter

 Battery life: Depends on the modem card you use.
With a Psion Dacom 28.8 modem, typically 90 to 120 mins (Duracell
batteries). If the unit is unused, approximately 6 months (Duracell batteries).

 Interface to computer: Series 3a variant: SIBO Fast Serial (ASIC5)
Series 3c variant: RS232
PC variant: RS232

 User interface: A single LED and piezo buzzer. The LED flashes according to the status of
the PC Card adapter (transmitting, low power warnings etc.). The piezo
buzzer provides modem tones, dial tones and bleeps with recognition when a
PC Card modem is inserted into the adapter.

 Connectors: For connection to the computer:
Series 3a variant: 6-way two row rectangular (female) custom plug
Series 3c variant: Low Profile Honda type custom connector
PC variant: 9-way D type connector

 For connection to the PC Card modem:
PCMCIA standard connector

SERIES 3/3A PROGRAMMING GUIDE

A - 12

 Supported PC Cards: Psion Dacom Gold Card
US Robotics WorldPort
Pace Microlin
Megahertz X JACK Series
Nokia Cellular Data Card
Philips Mobile Data Card
Hayes PC Cards
Dr. Neuhaus Fury Cards
and many other popular models

 PC Modem Cards can be inserted at any time and recognised by the card
adapter (hot swapping)

 DTE formats 8N1,7E1,7O1

 Flow control RTS/CTS

 Data transfer rates: 300 Baud to 57.6 KBaud with autobauding
300 Baud to 115 KBaud without autobauding

 Note: Because Psion Fast Serial operates at a maximum 19.2kbs the user will
not be able to get the full 33.6 KBaud data rate available from V.34 PC
Cards in the Series 3a variant of the PC Card Adpter. In this scenario the
connection rate will drop down to 14.4 KBaud.

 Indicator LED

PC Card to/from
Psion

 Indicator LED

 Status On Batteries On Mains
 Stand by Off Flashing green (slow)

 Idle Flashing green (slow) Flashing green (slow)

 Configuring PC card Flashing green (fast) Flashing green (fast)

 Connected to remote modem Continuous green Continuous green

 Low battery warning Flashing red N/A

APPENDIX A: TECHNICAL SPECIFICATIONS

A - 13

 Psion Travel Modem Technical Specification

 Physical

 Part number: unknown at time of publication (available January 1997)

 Series 3/3s compatibility: No

 Series 3a compatibility: No

 Workabout compatibility: No

 Series 3c compatibility: Yes

 Siena compatibility: No

 EMC: FCC Part 15 Class B; CE Mark

 Environment: Operating temperature: 0-50C
Operating humidity: 0-95% non-condensing

 Dimensions: 165mm x 40mm x 25mm

 Power: 2 x AA batteries or
optional rechargeable NiCad battery pack or
optional 10V (250mA) DC Series 3c mains adaptor.

 Communications

 Functions: Autodialling (tone and pulse) modem conforming to:
V.21,V.22, V.23, V.22bis, V.27ter, V.29, V 32 and V 32bis standards.
It supports V.25 auto answering recommendations.

 Dialling: May be used with either tone (MF) or pulse (LD) signalling BT lines.

 Echo suppressor: Echo-suppressor tone (V25) when auto answering.

 REN: 1.

 Fax operation: Controlled automatically by software (not supplied with the Travel
Modem).
The Travel Modem can send faxes at up to 9600bps.
The fax feature is compatible with Group 3 fax machines.

 Computer connection

 Connector: Low Profile Honda type custom connector on flying lead
for connection to a Psion Series 3c.
See the 'Reduced External Expansion' section of the 'SIBO Expansion Ports'
chapter in the Hardware Reference manual for pinout details.

 Network connection

 Data transfer rate: up to 57600bps with V.32bis and V.42bis
(compression is dependant upon file type)
V.32 9600 bps full duplex
V.32bis 14400 bps full duplex

SERIES 3/3A PROGRAMMING GUIDE

A - 14

 Operational modes: V.21 300bps full duplex
V.22 1200bps full duplex
V.22bis 2400bps full duplex
V.23 1200/75 full duplex 75/1200 full duplex
V.27ter 4800bps fax send and receive
V.29 9600bps fax send and receive

 Line connection: 2 wire PSTN via BT 600 type modular jack on flying lead

 Signal level: -9 dBm

 Equalisation: Transmit fixed compromise
Receive automatic adaptive

 Interface: 600 ohm

 Error correction: V.42 incorporating LAPM and MNP Class 4
MNP Class 10

 Data compression: V.42bis and MNP Class 5

 Autodial/autoanswer

 Dial method: Tone or pulse, selectable

 Call progress: Loudspeaker with on/off control
Extended results codes

 Call control: Extended "AT" command set

 Automatic answer: To CCITT V.25 recommendation

 Mode selection: Automatic configuration to V.21/V.22/V.23/V.22bis and V32/V32bis on
receive

 Call disconnection: Loss of carrier, DTR or by command

 BABT Approval

 Approval number: 606866

 Psion 3Fax Modem Technical Specification
 The 3Fax modem has been superseded by the Series 3a PC Card Adapter with a suitable PC Card modem,
combined with the PsiFax software on SSD, (for the Series 3c there is the Travel Modem).

 Physical

 Part number: 1601-0022-01

 Series 3/3s compatibility: No

 Series 3a compatibility: Yes (512KB, 1MB and 2MB models only)

 Workabout compatibility: No

 Series 3c compatibility: No

 Siena compatibility: No

 EMC: FCC Part 15 Class B; CE Mark

 Environment: Operating temperature: 0-50C
Operating humidity: 0-95% non-condensing

 Dimensions: 165mm x 40mm x 25mm

 Power: 2 x AA batteries or
optional rechargeable NiCad battery pack or
optional 10V (250mA) DC Series 3a mains adaptor.

APPENDIX A: TECHNICAL SPECIFICATIONS

A - 15

 Communications
 Functions: Autodialling (tone and pulse) modem conforming to:

V.21,V.22, V.23, V.22bis, V.27ter, and V.29 standards.
It supports V.25 auto answering recommendations.

 Dialling: May be used with either tone (MF) or pulse (LD) signalling BT lines.

 Echo suppressor: Echo-suppressor tone (V25) when auto answering.

 REN: 1.

 Fax operation: Controlled automatically by the software supplied with the 3Fax modem.
The 3Fax modem can send faxes at up to 9600bps.
The fax feature is compatible with Group 3 fax machines.

 Computer connection
 Connector: 6-way two row rectangular (female) plug

for connection to a Psion Series 3a.
See the 'Reduced External Expansion' section of the 'SIBO Expansion Ports'
chapter in the Hardware Reference manual for pinout details.

 Network connection
 Data transfer rate: up to 9600bps with V.22bis and V.42bis

(compression is dependant upon file type)

 Operational modes: V.22bis 2400 bps full duplex
V.22 1200 bps full duplex
V.23 1200/75 full duplex 75/1200 full duplex
V.21 300 bps full duplex
V.27 ter 4800 bps fax send and receive
V.29 9600 bps fax send and receive

 Line connection: 2 wire PSTN via BT 600 type modular jack
3 wire Bell Tinkle Suppression supported

 Signal level: -9 dBm

 Equalisation: Transmit fixed compromise
Receive automatic adaptive

 Interface: 600 ohm

 Error correction: V.42 incorporating LAPM and MNP Class 4

 Data compression: V.42bis and MNP Class 5
 Autodial/autoanswer
 Dial method: Tone or pulse, selectable

 Call progress: Loudspeaker with volume control
Extended results codes

 Call control: Extended "AT" command set

 Automatic answer: To CCITT V.25 recommendation

 Mode selection: Automatic configuration to V.21/V.22/V.23 & V.22bis on receive

 Call disconnection: Loss of carrier, DTR or by command
 BABT Approval
 Approval number: NS/1397/3/R/604375

 The greyed out table is statutory statements and not really part of the tech spec

 Nokia 21XX to Series 3c/Siena SMS Cable
- Technical specification
 This SMS cable is available from the beginning of January 1997.

 This SMS Link cable connects a Psion Series 3c or Siena to Nokia’s 21XX range of GSM/DCS/PCS
digital mobile phones.

 The cable is for use with applications based on version 2.01 of the SMS SDK running on a Siena or
Series 3c.

 The top level Psion part number for this SMS cable is 1601- 0106 -01.

SERIES 3/3A PROGRAMMING GUIDE

A - 16

 Ericsson SMS SDK and SMS Cables
 There will be 2 types of SMS products:

• SMS SDK - enables Psion Registered Developers to create applications for both vertical and
horizontal markets that make use of the SMS capability provided by Ericsson’s GSM/DCS/PCS
digital mobile phones;

• SMS applications and SMS cables - Shrink wrapped and custom SMS applications available
from both Psion and its Registered Developers. These applications will be invariably be packaged
with the Ericsson SMS cable to connect the Psion to the Ericsson mobile phone.

 The SMS SDK will be released to selected registered developers from the end of December 1996.

 The SMS SDK is distributed for free.

 Product Description
 Ericsson SMS SDK

 The SMS SDK provides the following capabilities:

• Mobile Originate (MO) and Mobile Terminate (MT) of SMS messages;

• Access to the address book memory within the phone and SIM;

• Sensing of key presses and screen indications on the phone;

• Ability to send the full range of key presses from the Psion to the phone;

• Sensing the model number and firmware version of the phone;

• SMS delivery status reports (DSRs).

 SMS cables

 An SMS Link cable connects a Psion Series 3c or Siena to Ericsson’s GSM/DCS/PCS range of digital
mobile phones (GH377, GF388, GA318, PH337, CH337 etc.)

 Note: Ericsson SMS links will not be available for the Psion 3a.

 The interface between the Ericsson handset and Psion 3c/Siena is housed within the Ericsson connector,
thus providing the user with only a thin cable connection.

 The top level Psion part number for this SMS cable is 1601-0107-01.

APPENDIX A: TECHNICAL SPECIFICATIONS

A - 17

 Cellnet SMS link
 Cellnet SMSlink is a joint development between Cellnet and Psion. It is an SMS product for the popular
Series 3a and Nokia 2110 combination.

 The Product includes:

• Cable to connect Series 3a to Nokia 2110/2110i, and Philips PR747 GSM mobile phones

• Series 3a software for composing, sending and receiving text messages

• PC software (on floppy disc) to send text messages direct from PC to GSM mobile phones.
(Requires a modem) Note: This is Freeware supplied by Cellnet.

• User Guide

 Cellnet SMSlink allows you to:

• Compose, edit, send and receive short messages of up to 160 characters

• Simple message management using the inbox and outbox, and unread message box

• Send and receive electronic business cards

• Send messages to a selected group of contacts

• Incorporates a contact manager similar to the built-in Data application

• Works with contact databases generated using Data or compatible applications

• Sort and search on contact database entries

• 10 pre-set messages, and you can also create your own.

• Appointment details sent in a message may be extracted and merged with Agenda.

 Compatibility

 Compatible with Psion Series 3a computers - 512k and above

 This application will be distributed on SSD and floppy disk. Floppy disc version requires PsiWin or 3link
for installation.

 Version Top level part number

 SSD: 1601-0065-01

 Floppy disc: 1601-0066-01

Availability

 Has been available from August 1996.

 Please Note: Our license with the development company only allows us to market this product in the UK.
Therefore it is not available to export markets.

SERIES 3/3A PROGRAMMING GUIDE

A - 18

 Vodaphone Telenote Link
 Vodaphone Telenote Link is a joint development between Vodaphone, Nokia and Psion. It is an SMS
product for the popular Series 3a and Nokia 2110 combination.

 Versions

 There are two versions of the Telenote link:

• Version 1, (available from the beginning of December 95), is for use with the Nokia 2110 and
Philips PR747 digital handsets;

• Version 2, (available from February 96), is for use on the Orbitel 905 digital handset.

 The product is issued either on SSD and floppy disk.

 System Requirements

 Telenote Link requires a Psion Series 3a 256K or larger internal RAM palmtop computer, or a Psion
Workabout, and a Nokia 2110 (or equivalent) digital phone on the Vodafone digital mobile phone
network.

 The Telenote Link product includes software for a PC which allows its user to originate messages, and
using a modem, (not supplied) to dial direct into the Vodafone Short Message Centre.

 Telenote Link Functions

 The Vodafone Telenote Link for the Psion Series 3a allows the user you to create, store and receive short
messages in a simple intuitive manner using his Series 3a and Nokia GSM phone. The software for the
Series 3a also includes a comprehensive address book function and the ability to create frequently used
messages (e.g. “Please call me”, or “I will be 15 minutes late for the meeting”), which can be sent quickly
with a minimum number of key strokes.

 The Telenote Link product allows the user to:

• Send messages from his Series 3a and Nokia phone to another handset on the Vodafone GSM
network, or any other GSM network world-wide which supports SMS and with which Vodafone
have a roaming agreement;

• Send messages from a PC (provided the user already has a modem) to any GSM handset on the
Vodafone network (this feature will work with handsets other than those based on the Nokia
2110).

 The Telenote Link product does not allow the user to:

• Send or receive SMS to/from a Cellnet, Orange or Mercury digital phone;

• Send or receive SMS to/from a phone on a network which does not support SMS, or with which
Vodafone does not have a roaming agreement. Most foreign GSM networks will support it, but
some (particularly France) are behind in deploying the service;

• Send or receive e-mail to/from his Series 3a/Nokia;

• Send or receive Faxes to/from his Series 3a/Nokia.

 Telenote Link P ackage

 The Telenote Link Package includes:

• Cable to connect a Series 3a to Nokia 2110 (or derivatives such as Philips) GSM phones on the
Vodafone network;

• Software for the Series 3a supplied on floppy disk or SSD. Floppy disk software (requires a PC
and PsiWin to download to Series 3a);

• Software for a PC allowing use of a modem (not supplied) to direct dial into the Vodafone Short
Message Centre, allowing the user to originate messages from his desktop. This is particularly
useful for a receptionist/secretary who needs to pass on messages to somebody who is away from
the office;

• Comprehensive user guide.

APPENDIX A: TECHNICAL SPECIFICATIONS

A - 19

 Version Top level part number

 SSD: 1601-0057-01

 Floppy disc: 1601-0056-01

Availability

 Current product.

 Orange Messaging Link
 Orange Messaging Link is a joint development between Orange and Psion. It is a messaging product
which is based on the GSM SMS service but for the Orange network. (Orange is a Personal
Communications Network (PCN) which uses GSM technology but at a higher frequency and with lower
power handsets) It works with Series 3a and Nokia Orange and Nokia Orange 5.1 handsets.

 The product includes:

• Cable to connect Series 3a to Nokia Orange and Nokia 5.1 handsets

• Series 3a software for composing, sending and receiving text messages

• User Guide

• A guide prepared by Orange on how to access their network from a PC with a modem to send
messages.

 Orange Messaging Link allows you to:

• Compose, edit, send and receive short messages of up to 160 characters

• Simple message management using the Sent, Received, Not sent, and Phonebook dialogues

• Send messages to a selected group of contacts

• Works with contact databases generated using the series 3a Data application.

• Create your own preset messages

Compatibility

Compatible with Psion Series 3a computers - 512k and above

This application software is distributed on SSD or floppy disk. The floppy disc version requires PsiWin or
3Link for installation.

Version Top level part number:

SSD: 1601-0067-01

Floppy disc: 1601-0068-01

Availability

Available from mid-November 1996.

Please Note: Our license with the development company only allows us to market this product in the UK.
Therefore it is not available to export markets.

SERIES 3/3A PROGRAMMING GUIDE

A - 20

B - 1

APPENDIX B

DIFFERENCES BETWEEN PSION SERIES 3 MODELS

At the time of writing there are four current and six superseded machines in the Series 3 family. The main
differences between the computers are tabulated overleaf.

SERIES 3/3A PROGRAMMING GUIDE

B - 2

Current models in the Series 3 family
Feature \ Model Series 3c Series 3c Siena Siena

Internal RAM size 2MB 1MB 1MB 512KB

Internal masked ROM size 2MB 2MB 1MB 1MB

Screen (pixels) 480x160 480x160 240x160 240x160

Screen (characters) 80x17 80x17 40x17 40x17

Grey scale supported 3 3 3 3

SSD drives 2 2 optional
extra

optional
extra

Communications connector R232
low profile,
with power
output

R232
low profile,
with power
output

R232
low profile,
with power
input

R232
low profile,
with power
input

Time management/organiser

- Open book diary with reminder alarms day/week day/week day/week day/week

- Planner views year/busy year/busy busy busy

- 'Things to do' manager multiple lists
with due
dates and
alarms

multiple
lists with
due dates
and alarms

multiple
lists with
due dates
and alarms

multiple
lists with
due dates
and alarms

- Chronological list and anniversaries view 3 3 3 3

Voice/sound recording and playback “Sound”
app

“Sound”
app

Spreadsheet 3 3 3 3

Database list view 3 3 3 3

Calculator desk,
advanced

desk,
advanced

desk,
advanced

desk,
advanced

Jotter 3 3

File Manager 3 3

Print preview 3 3 3 3

Fax facility (send only) optional
extra

optional
extra

Infrred communications 3 3 3 3

Zoom-in zoom-out through four font sizes 3 3 3 3

Rich text file (RTF) support 3 3 3 3

Spellchecker and Thesaurus 3 3 optional
extra

optional
extra

Patience card game 3 3

Extended OPL language 3 3 3 3

Startup tips 3 3 3 3

APPENDIX B: DIFFERENCES BETWEEN PSION SERIES 3 MODELS

B - 3

Superseded models in the Series 3 family
Feature \ Model Series 3a Series 3a Series 3a Series 3a Series 3s Series 3 Series 3

Internal RAM size 2MB 1MB 512KB 256KB 256KB 256KB 128KB@

Internal masked ROM size
(* 2MB if Spell app included)

2MB/1MB* 2MB/1MB* 1MB 1MB 512KB 384KB or
512KB

384KB or
512KB

Screen (pixels) 480x160 480x160 480x160 480x160 240x80 240x80 240x80

Screen (characters) 80x17 80x17 80x17 80x17 40x9 40x9 40x9

Grey scale supported 3 3 3 3

SSD drives 2 2 2 2 2 2 2

Communications connector SIBO SIBO SIBO SIBO SIBO SIBO SIBO

Time management/organiser

- Open book diary with reminder alarms day/week day/week day/week day/week day day day

- Planner views year year year year

- 'Things to do' manager multiple
lists with
due dates
and alarms

multiple
lists with
due dates
and alarms

multiple
lists with
due dates
and alarms

multiple
lists with
due dates
and alarms

single list,
up to 50
items

single list,
up to 50
items

single list,
up to 50
items

- Chronological list and anniversaries view 3 3 3 3

Voice/sound recording and playback “Record”
app

“Record”
app

“Record”
app

“Record”
app

Spreadsheet 3 3 3 3 3

Database list view

Calculator advanced advanced advanced advanced advanced advanced advanced

Jotter

File Manager optional
extra

optional
extra

optional
extra

optional
extra

Print preview 3 3 3 3

Fax facility (send only) optional
extra

optional
extra

optional
extra

Infrared communications

Communications application 3 3 3 3 optional
extra

optional
extra

optional
extra

Zoom-in zoom-out through four font sizes 3 3 3 3

Rich text file (RTF) support 3 3 optional
extra

optional
extra

optional
extra

optional
extra

optional
extra

Spellchecker and Thesaurus 3 3 optional
extra

optional
extra

optional
extra

Patience card game 3 3 optional
extra

optional
extra

Extended OPL language 3 3 3 3

Startup tips

SERIES 3/3A PROGRAMMING GUIDE

B - 4

INDEX

.afl files
add file lists pre-defined slots S3, 1-2
add file lists S3, 1-2

.als files
creating .als files S3, 2-5
creating with makeals.exe S3, 2-5

.app files
versus .img files, 1-2

.img files
versus .app files, 1-2

.ma files
alias file source file S3, 2-5

.ms files
multi-lingual S3, 2-3
shell data file source file S3, 2-1

.pcx files
converting to icon files, 1-3

.pic files
application icons S3, 1-2

.rsc files
resource files application S3, 1-2

.rzc files
resource files compressed S3, 1-2

.shd files
application S3, 1-3
creating with makeshd.exe S3, 2-1
customised S3, 1-3
multi-lingual S3, 2-2
shell data files S3, 1-2

3Fax modem
data compression, A-15
modes, A-15

3Link parallel
specification, A-10

3Link PC serial
Apple Macintosh converter, A-7
assembly components, A-7

3Link serial cable
specification, A-5

9-to-25 way D-type adapters
specification, A-9

9-to-25 way D-type modem adapters
wiring diagram, A-9

9-to-25 way D-type PC (XT) adapters
wiring diagram, A-9

9-to-25 way D-type printer adapters
wiring diagram, A-10

adapter - PC card modem
specification, A-11

adapters 9-to-25 way D-type
specification, A-9

adaptor cable
modem - 3Link, A-7

adaptor cable modem
Mac Link, A-8
PC Link, A-8

add file list
application pre-defined slots S3, 1-2
application S3, 1-2

add files
finding in an app file S3, 1-3

alias files
creating from .ma source files S3, 2-5
creating with makeals.exe S3, 2-5

aliasing
applications active S3, 2-5
applications active Word app S3, 2-5
applications mechanisms S3, 2-6
applications passive S3, 2-5
applications S3, 2-4
creating .als files S3, 2-5
Word app multi-lingual S3, 2-13

Apple Macintosh
3Link - convertion from PC 3Link, A-7

application
add file finding in app files S3, 1-3
add file lists pre-defined slots S3, 1-2
add file lists S3, 1-2
alias .als files creating S3, 2-5
alias file creating from .ma files S3, 2-5
aliasing active S3, 2-5
aliasing active Word app S3, 2-5
aliasing mechanisms S3, 2-6
aliasing passive S3, 2-5
aliasing S3, 2-4
aliasing Word app multi-lingual S3, 2-13
app files vs img files, 1-2
button assigning system screen S3, 2-8
button assignments system screen S3, 2-8
comand line command byte S3, 2-10
comand line debugger and S3, 2-10
comand line disregarding S3, 2-11
comand line handling S3, 2-9
command line absent S3, 1-3
command line byte new types S3, 2-13
command line format of S3, 2-9
command line handling S3, 2-10
compatibility S3/3a/Workabout, 1-5
compatibility S3/S3a/S3c/Siena, 1-5
default directory S3, 2-2
default file extension S3, 2-2
directories creating as needed S3, 2-12
example Spy Hwif, 4-1
heap integrity Spy app, 4-2
heap statistics Spy app, 4-2
icon files, 1-2
icons producing, 1-3
icons with or without S3, 1-3
multi-lingual keyboard S3, 1-4
multi-lingual menu accelerators S3, 1-4
other data Spy app, 4-3
process priorities Spy app, 4-2
public name S3, 2-2
resource .rsc files, 1-2
resource files .rzc compressed S3, 1-2
running via Runimg S3, 1-3
segment statistics Spy app, 4-2

SERIES 3/3A PROGRAMMING GUIDE

ii

shell data files creating from .ms files S3,
 2-1
shell data files customised S3, 1-3
shell data files multi-lingual S3, 2-2
shell data files S3, 1-2, 1-3
shell data source files multi-lingual S3, 2-3
shut down message absent S3, 1-3
shut down message S3, 2-12
Spy, 4-1
Spy building, 4-1
Spy main display, 4-1
Spy source code, 4-1
Spy system processes, 4-1
stack statistics Spy app, 4-2
switch file message absent S3, 1-3
switch files message S3, 2-12
system message receiving S3, 2-12
system screen command line message S3,
 2-13
system screen communications S3, 2-1
system screen message handling S3, 2-12
system screen shut down message S3, 2-12
system screen switch files message S3, 2-12
type numbers S3, 2-2
type pure file list S3, 2-4
window server statistics Spy app, 4-3

button
assigning in system screen S3 apps, 2-8
assignments in system screen S3 apps, 2-8

cable adaptor
modem - 3Link, A-7

cable adaptor modem
Mac Link, A-8
PC Link, A-8

command line
absent application S3, 1-3
command byte S3 apps, 2-10
debugger and S3 apps, 2-10
disregarding S3 apps, 2-11
format of S3 apps, 2-9
handling S3 apps, 2-9, 2-10
magic statics updating S3 apps, 2-11
new command byte types S3, 2-13
new for system screen message S3, 2-13

comms
3Fax modem data compression, A-15
error correction, A-14, A-15
Travel Modem data compression, A-14

compatibility
S3/S3a/S3c/Siena apps, 1-5
S3/S3a/Workabout apps, 1-5

DatApp1
magic static system screen S3, 2-8

DatLocked
magic static S3, 2-7, 2-9

DatProcessNamePtr
magic static S3, 2-7, 2-8

DatStatusNamePtr
magic static S3, 2-7, 2-9

DatUsedPathNamePtr
magic static S3, 2-7, 2-8

debugging
magic statics S3 apps, 2-7

directories

creating as needed S3 apps, 2-12
directory

default S3 app, 2-2
environment variable

naming of, 1-5
Series 3, 1-4

EPOC
magic statics S3, 2-7

file list
application type pure S3, 2-4

file lists
files with hidden attribute S3, 2-8
system screen and S3 apps, 2-7
system screen name with Sys$ S3, 2-7

file name
extension default S3 app, 2-2

heap integrity
Spy application, 4-2

heap statistics
Spy application, 4-2

Hwif
application example Spy, 4-1
application magic statics S3, 2-7

HWIM
application magic statics S3, 2-7

icon files
application S3, 1-2
contents and formats, 1-3
converting from .pcx, 1-3
production of, 1-3

Iconed
producting icon files, 1-3

Macintosh
3Link - PC serial converter, A-7

Macintosh link cable
specification, A-8

magic static
command line updating S3, 2-11
DatApp1 system screen S3, 2-8
DatLocked S3, 2-7, 2-9
DatProcessNamePtr S3, 2-7, 2-8
DatStatusNamePtr S3, 2-7, 2-9
DatUsedPathNamePtr S3, 2-7, 2-8
debugging and S3 apps, 2-7
Hwif and S3 apps, 2-7
HWIM and S3 apps, 2-7
Series 3/3a, 2-7
system screen S3 apps, 2-7
window server S3 apps, 2-7

makeals.exe
alias files creating S3, 2-5

makeshd.exe
utility program, 2-1

modem
3Fax modem modes, A-15
Travel modem data compression, A-14
Travel Modem modes, A-14

modem - 3Fax
specification Series 3, A-14

modem - PC card adapter
specification, A-11

modem adapters 9-to-25 way D-type
wiring diagram, A-9

modem adaptor cable

INDEX

iii

3Link, A-7
Mac Link, A-8
PC Link, A-8

modem -Travel
specification, A-13

multi-lingual
aliasing Word app S3, 2-13

multi-lingual apps
keyboards S3, 1-4
menu acceleratiors S3, 1-4

other data
Spy application, 4-3

parallel 3Link
specification, A-10

parallel printer link cable
specification, A-10

PC (XT) 9-to-25 way D-type adapters
wiring diagram, A-9

PC card modem adapter
specification, A-11

PC Link cable
specification Series 3c/Siena, A-8

PC serial 3Link
Apple Macintosh converter, A-7
assembly components, A-7

printer 9-to-25 way D-type adapters
wiring diagram, A-10

printer cable serial
specification Series 3a), A-7
specification Series 3c/Siena), A-8

printer parallel link cable
specification, A-10

process priorities
Spy application, 4-2

program files
icons with or without S3, 1-3

programming
Series 3 choices, 1-1
Series 3 overview, 1-1

public name
application S3, 2-2

REN
ringer equivalence number, A-15
ringer equivalence number modem, A-13

reserved statics
see magic static, 2-7

resource files
application .rsc S3, 1-2
application .rzc compressed S3, 1-2

ringer equivalence number
modem, A-13
modem), A-15

Runimg
application running from S3, 1-3

segment statistics
Spy application, 4-2

serial 3Link
assembly components - PC serial, A-7

serial 3Link cable
specification, A-5

serial link
specifications 3Link cable, A-5

serial printer cable
specification Series 3a), A-7

specification Series 3c/Siena), A-8
Series 3

environment variables, 1-4
programming choices, 1-1
programming overview, 1-1
sound device driver MUS:, 3-1, 3-2
sound driver de-installing sndfrc.ldd, 3-4
sound driver installing sndfrc.ldd, 3-1, 3-4
sound driver snddvr.ldd, 3-1
sound driver sndfrc.ldd, 3-1
sound enhanced, 3-1
specifications 3Link cable, A-5
specifications modem 3Fax, A-14

Series 3 models
differences between, B-1

Series 3/3s
specifications, A-2

Series 3a
sound, 3-4
sound device driver SND:, 3-1, 3-4
sound example code, 3-5
sound simultaneous, 3-1
specifications, A-1

Series 3c
specification, A-3

shell application
communicating with S3, 2-1

shell data files
application S3, 1-2, 1-3
application type numbers S3, 2-2
creating from .ms files S3, 2-1
creating with makeshd.exe S3, 2-1
customised S3, 1-3
default directory S3 app, 2-2
default file extension S3 app, 2-2
multi-lingual S3, 2-2
source .ms files S3, 2-1
source multi-lingual S3, 2-3

shut down
absent message application S3, 1-3
message handling S3 apps, 2-12

SIBO
Series 3 models - differences, B-1

Siena
specification, A-4

Siena SSD drive
specification, A-5

sound
device driver MUS: Series 3, 3-1, 3-2
device driver SND: Series 3a, 3-1, 3-4
driver snddvr.ldd Series 3, 3-1
driver sndfrc.ldd de-installing Series 3, 3-4
driver sndfrc.ldd installing Series 3, 3-1,
 3-4
driver sndfrc.ldd Series 3, 3-1
enhanced S3, 3-1
Series 3a, 3-4
Series 3a example code, 3-5
simultaneous Series 3a, 3-1

specification technical
9-to-25 way D-type adapters, A-9
Macintosh link cable, A-8
parallel 3Link, A-10
parallel printer link cable, A-10

SERIES 3/3A PROGRAMMING GUIDE

iv

PC card modem adapter, A-11, A-13
PC Link cable Series 3c/Siena, A-8
printer - parallel link cable, A-10
serial printer cable Series 3a, A-7
serial printer cable Series 3c/Siena, A-8
Series 3 - 3Link cable, A-5
Series 3/3s, A-2
Series 3a, A-1
Series 3c, A-3
Siena, A-4
Siena SSD drive, A-5
Travel modem, A-13

specifications technical
modem 3Fax Series 3, A-14

Spy
application, 4-1
application building, 4-1
application heap integrity, 4-2
application heap statistics, 4-2
application main display, 4-1
application other data, 4-3
application process priorities, 4-2
application segment statistics, 4-2
application source code, 4-1
application stack statistics, 4-2
application system processes, 4-1
application window server statistics, 4-3

SSD drive - Siena
specification, A-5

stack statistics
Spy application, 4-2

statics reserved
see magic static, 2-7

switch file
absent message application S3, 1-3

switch files
message handling S3 apps, 2-12

system processes
Spy application, 4-1

system screen
assigning application buttons S3, 2-8
communicating with S3, 2-1
current file S3, 2-1
file list names with Sys$ S3, 2-7
file lists and S3 apps, 2-7
files with hidden attribute S3, 2-8
magic statics S3 apps, 2-7
message handling S3 apps, 2-12
message receiving S3 apps, 2-12
new command line message S3 apps, 2-13
shut down message handling S3 apps, 2-12
shut down message S3, 2-1
status window S3, 2-1
switch files message handling S3 apps, 2-12
switch files message S3, 2-1

system screen
magic static DatApp1 S3, 2-8

Travel modem
specification, A-13

type numbers
applications S3, 2-2

utility program
makeals.exe alias file utility, 2-5
makeshd.exe shell data file utility, 2-1

window server
magic statics S3 apps, 2-7
statistics Spy application, 4-3

wiring diagram
9-to-25 way D-type modem adapters, A-9
9-to-25 way D-type PC (XT) adapters, A-9
9-to-25 way D-type printer adapters, A-10

Word application
aliasing active example S3, 2-5

wspcx.exe
converting .pcx files to icon files, 1-3

	SERIES 3/3A PROGRAMMING GUIDE
	Contents
	CHAPTER 1 SERIES 3 PROGRAMMING OVERVIEW
	Programming possibilities
	Differences between .app files and .img files
	Add-file lists
	Pre-defined add-file slots
	Running programs via RunImg
	Program files with and without icon files
	Resource files and shell data files
	Customised add-files
	Finding add-files within a .app file

	Multi-lingual applications
	Environment variables on the Series 3
	Avoid $ signs

	Series 3 family compatibility
	Series 3/Series 3a/Work about compatibility
	Compatibility with Series 3c and Siena
	Programs written for the Series 3
	Programs written for the Series 3a

	CHAPTER 2 COMMUNICATING WITH THE SYSTEM SCREEN
	Introduction
	Creating .shd files
	The format of .ms files
	Default extension
	Public name
	Default directory
	Application type numbers
	Multi-lingual forms of .ms files
	Pure file list applications

	Aliasing applications
	Creating .als files
	Active aliasing and passive aliasing
	Active aliasing in the built-in text editor
	How aliasing works

	Epoc reserved statics
	DatProcessNamePtr (0x22)
	More on the file lists in the System Screen
	Assigning application buttons
	DatUsedPathNamePtr (0x3e)
	DatStatusNamePtr (0x3c)
	DatLocked (0x3a)

	The Series 3 command line
	Summary of command line format
	Supplying a command line from the SIBO Debugger
	From command line to reserved statics
	Applications that disregard their command line
	Creating directories when required

	Messages from the System Screen
	Shutdown messages
	Switchfiles messages
	How messages from the System Screen are received
	Contents of the new command line for System Screen messages
	Other possible types of messages

	Multi-lingual aliasing of Word.app

	CHAPTER 3 ENHANCED SOUND OUTPUT
	Introduction
	Sound on the Series 3
	Introduction
	The sndfrc and snddvr device drivers
	Installing sndfrc.ldd
	Opening a channel to MUS:
	Actually creating sounds
	Example
	Possible tones
	Pauses
	When to open and close MUS:
	When to install and de-install the ldd file

	Sound on the Series 3a

	CHAPTER 4 USE OF SPY.APP
	Introduction
	Building spy.app

	The main display
	Heap statistics
	Stack statistics
	Segment statistics
	Tests for heap integrity
	Process priorities
	Other data
	Logging Window Server statistics

	APPENDIX A TECHNICAL SPECIFICATIONS
	Psion Series 3a Technical Specification
	Physical characteristics
	Power supply
	Memory
	System information
	Expansion
	Environment

	Psion Series 3/3s Technical Specification
	Physical characteristics
	Power supply
	Memory
	System information
	Expansion
	Environment

	Psion Series 3c Technical Specification
	Physical characteristics
	Power supply
	Memory
	System information
	Communications
	Expansion
	Environment

	Psion Siena Technical Specification
	Physical characteristics
	Power supply
	Memory
	System information
	Communications
	Expansion
	Environment

	Psion Siena SSD Drive Technical Specification
	Physical characteristics

	Psion Serial 3Link Technical Specification
	PC Serial 3Link assembly components
	PC Serial 3Link to Apple Macintosh converter
	Modem Adaptor cable

	Serial Printer cable (Series 3a) - Technical Specification
	Serial Printer cable (Series 3c/Siena) - Technical Specification
	Psion PC Link cable Technical Specification
	Modem Adaptor cable

	Psion Mac Link cable Technical Specification
	Psion 9-to-25 way D-type adapters - Technical Specification
	Modem 9-to-25 way D-type adapter - wiring diagram
	PC (XT) 9-to-25 way D-type adapter - wiring diagram
	Printer 9-to-25 way D-type adapter - wiring diagram

	Psion Parallel 3Link Technical Specification
	Psion Parallel Printer Link cable - Technical Specification
	Psion PC Card Modem Adapter - Technical Specification
	Variants
	Physical characteristics
	Indicator LED

	Psion Travel Modem Technical Specification
	Physical
	Communications
	Computer connection
	Network connection
	Autodial/autoanswer
	BABT Approval

	Psion 3Fax Modem Technical Specification
	Physical
	Communications
	Computer connection
	Network connection
	Autodial/autoanswer
	BABT Approval

	Nokia 21XX to Series 3c/Siena SMS Cable - Technical specification
	Ericsson SMS SDK and SMS Cables
	Product Description
	Ericsson SMS SDK
	SMS cables

	Cellnet SMS link
	Compatibility
	Availability

	Vodaphone Telenote Link
	Versions
	System Requirements
	Telenote Link Functions
	Telenote Link Package
	Availability

	Orange Messaging Link
	Compatibility
	Availability

	APPENDIX B DIFFERENCES BETWEEN PSION SERIES 3 MODELS
	Current models in the Series 3 family
	Superseded models in the Series 3 family

	INDEX

